

User Guide Please read the Important Notice and Warnings at the end of this document 002-20504 Rev. *L

www.infineon.com page 1 of 26 2022-03-02

Hardware debugging for AIROC™ Bluetooth®

System-on-Chip devices

ModusToolbox™

About this document

Scope and purpose

This document provides a description of hardware debugging support for ModusToolbox™ and Bluetooth® SDK
(BTSDK) software and AIROC™ CYWxxxxx devices.

Intended audience

Embedded developers using AIROC™ BTSDK solutions desiring to perform hardware debugging on CYWxxxxx
devices.

User Guide 2 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 3
1.1 Hardware and software requirements ... 3

2 Debug probe software setup .. 5
2.1 Debug probe .. 5
2.2 KitProg3 ... 5

2.3 Infineon MiniProg4 .. 6
2.4 SEGGER J-Link ... 7

3 Kit setup ... 8

4 Preparing the embedded application for debug ... 9

5 Using the hardware debugger ... 12
5.1 Validate the hardware setup ... 12
5.2 Using the Eclipse IDE for ModusToolbox™ ... 15
5.3 Using the Visual Studio Code IDE .. 17

5.4 Use VS Code for hardware debugging .. 19

5.5 Hardware debugging from the command line ... 21

6 Troubleshooting ... 24

Revision history... 25

User Guide 3 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Introduction

1 Introduction

ModusToolbox™ provides support for source-code-level debugging of applications running on AIROC™

Bluetooth® System-on-Chip (SoC) devices in the CYW207xx, CYW208xx, CYW43012C0, and CYW307xx chip
families, referred to as CYWxxxxx in the rest of this document. Although this debugging technique often

conflicts with the real-time requirements of IoT, it can provide valuable insight by stopping the CPU at
breakpoints or watchpoints and providing the ability to check on the state of code and data using source code
symbols.

The ModusToolbox™ kit hardware supports source-code-level debugging via a Serial Wire Debug (SWD)
interface that provides a means for a development PC to control the execution of the CYWxxxxx Arm® CPUs.
Third-party JTAG/SWD debug probes may be used to interface between the development PC and the debug

interface hardware.

Some kits use built-in debug probes and do not require additional hardware. The PC connected to the debug
probe uses associated GDB server software. This server provides a socket interface to the GNU debugger (GDB),
allowing it to control the debug interface and Arm® CPU. ModusToolbox™ coordinates the interfaces between

these entities: the CYWxxxxx Arm® CPUs, the debug probe and GDB server, GDB, and the symbols GDB needs to
translate between source code symbols and hardware memory addresses, registers, and so on.

This document provides a description of hardware debugging support for ModusToolbox™ software and

CYWxxxxx devices. This document describes the generic tools, setup, and techniques. Other kit-specific
documents are provided to describe those exact implementations.

The hardware interface for the Debug Access Port is provided to the Arm® CPU cores within the CYWxxxxx

devices. These Arm® architecture devices use a 2-pin SWD interface. The SWD pins are SWDIO and SWDCK. Many

debug probes support SWD.

Current hardware debug support for CYWxxxxx devices requires either a SEGGER J-Link probe or an OpenOCD-
supported probe.

1.1 Hardware and software requirements

The following items are required to debug an application developed for Infineon AIROC™ SoCs.

Table 1 Hardware reference

Item Description

Reference design

board

 A hardware reference design board based on an Infineon

CYWxxxxx SoC.

One of these: Hardware reference

design board using
KitProg3 USB/serial

bridge

No additional hardware dongle is needed when using kits

with PSoC™ 5LP-based KitProg3 device, for example

CY8C5868LTI-LP039.

SEGGER J-Link SEGGER provides several models of JTAG-SWD debug
probes that are compatible for hardware debugging. See

www.segger.com/downloads/jlink.

Infineon MiniProg4

Programmer/Debugger

See
https://www.infineon.com/cms/en/product/evaluation-

boards/cy8ckit-005/

https://www.segger.com/downloads/jlink
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/

User Guide 4 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Introduction

Item Description

PC

A computer (Windows, macOS, or Linux) that hosts the

following software items:

• ModusToolbox™

• A GDB server and debug probe interface software. For
this document we consider the SEGGER GDB server or
OpenOCD.

Debug probe USB cable Used for PC interface to debug hardware.

GDB Server software OpenOCD software is included with ModusToolbox™.

SEGGER GDB Server is available at

www.segger.com/downloads/jlink.

Debug probe 10-pin connector/adapter An adapter may be needed to match from a 20-pin JTAG
interface on the debug probe to a 10-pin SWD interface on

the development kit.

https://www.segger.com/downloads/jlink

User Guide 5 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Debug probe software setup

2 Debug probe software setup

2.1 Debug probe

Purchase debug probes and software separately if needed. SEGGER provides the J-Link probe that has been
demonstrated to work well with CYWxxxxx devices. Other debug probes, such as the Infineon MiniProg4, are

also compatible. Kits with the KitProg3 USB-serial bridge provide similar built-in functionality as the MiniProg4.

The instructions and screen shots are similar for Windows, Linux, and macOS operating systems unless
otherwise noted.

2.2 KitProg3

KitProg3 software setup is provided with ModusToolbox™, along with documentation on updates and support.

User Guide 6 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Debug probe software setup

2.3 Infineon MiniProg4

Follow the instructions provided with MiniProg4 for installation. ModusToolbox™ provides the supporting
software.

Figure 1 Device Manager with MiniProg4 and AIROC™ kit

User Guide 7 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Debug probe software setup

2.4 SEGGER J-Link

Do the following to install the SEGGER J-Link GDB Server:

1. Download the software from www.segger.com/downloads/jlink and look for “J-Link Software and
Documentation Pack”.

2. Once the software is installed, connect J-Link to the kit’s debug connector and then plug the J-Link into a
USB port on the computer. When USB enumeration completes, the J-Link device should appear on a

Windows PC in the Device Manager as Figure 2 shows.

Figure 2 Device Manager listing J-Link device

3. You can check the SEGGER J-Link hardware connection on a Linux PC using lsusb on a terminal to list USB

devices. On a macOS operating system, you can use the System Information utility.

Figure 3 Using System Information utility

https://www.segger.com/downloads/jlink

User Guide 8 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Kit setup

3 Kit setup

Each Infineon IoT development kit has particular setup requirements for the debug interface. Many kits use the

KitProg3 USB-serial bridge chip, for example the CYW920835M2IPA1. These kits do not require a dongle for
hardware debugging. Some have a dedicated debug probe socket, either 10-pin or 20-pin. A few kits do not

have a dedicated debug socket, but will have pin headers that can be “fly-wired” to a debug probe connector.
Besides the physical connection, each board may have some switch or jumper settings necessary to support
hardware debugging. Kit-specific documents (kit user guides, for example) are available to describe the exact

requirements.

Figure 4 Typical kit with with and without hardware debug probes

User Guide 9 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Preparing the embedded application for debug

4 Preparing the embedded application for debug

By default, CYWxxxxx devices do not enable SWD interface pins. These devices boot from the ROM code and do

not have an opportunity to set up SWD pins until the ModusToolbox™ embedded application is loaded and
executed. This means that SWD support must be enabled as a build option so that code will be compiled in to

configure pins during the application startup sequence to support SWD. The code necessary to configure GPIOs
for debugger support is defined in a macro called SETUP_APP_FOR_DEBUG_IF_DEBUG_ENABLED().

Because the pins must be configured prior to attaching the debugger, the application is built to run in a

software loop immediately after configuring the GPIO for debug support so that you can attach to the debugger
before the main application code begins to execute. The code for this loop is defined in a macro called

BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED().

These macros are defined in the source code file <workspace

dir>/mtb_shared/wiced_btsdk/baselib/<device>/<branch>/WICED/ common/spar_utils.h.

By default, these macros are enabled in an early part of application initialization, just after pins are configured
in wiced_platform_init(). Depending on the application, it may make sense to move them to another

location. Some critical points to consider are whether any GPIO configuration occurs in the application that

would be executed subsequent to the debug setup. If the GPIO used for debug have their configuration

overwritten by other code, the debug session will not work. Also, if the wait loop is executed in a time-critical
portion of the application, the time-critical functionality could be broken.

To set up the build to enable the desired pins for SWD using an IDE, navigate to the application source files,
open the application Makefile for editing, and set ENABLE_DEBUG to ‘1’. Note that the SWD pins are defined

for each kit and are configured by the macro definitions in spar_utils.h. The macro definitions may need to be

modified to change the pins that will be used for SWD. The pin configurator is not used because the pin
functionality depends on setting or unsetting ENABLE_DEBUG. After editing the Makefile, be sure to make

clean to force a rebuild of all sources if they were previously compiled.

Note: The source-code-level debugging depends on source code and debug symbol availability. You can

use the embedded application and source code libraries supplied for ModusToolbox™ for source
code debugging. Debug symbols for code and data defined in the device ROM or pre-compiled

libraries are not provided. Hardware debugging through these portions will show disassembled
machine code.

User Guide 10 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Preparing the embedded application for debug

Figure 5 Setting the ENABLE_DEBUG feature

Now you can build, program, and download the application.

Similarly, to build from the command line, use the make command line option ENABLE_DEBUG:

make ENABLE_DEBUG=1 program

Additional command line options may be needed depending on the application, CY_TOOLS_PATHS path, and

platform being used.

User Guide 11 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Preparing the embedded application for debug

Figure 6 Command line build

User Guide 12 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

5 Using the hardware debugger

Before using the debugger, do the following:

1. Connect the hardware debugger to the kit.

2. Configure the kit for debugging.

3. Build, program, and run an application that has debugging enabled on the kit.

Program execution stops progressing at the wait macro
BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED(). See the kit-specific documents for

details on the full setup.

5.1 Validate the hardware setup

The SWD interface can be tested independently from the ModusToolbox™ environment. This requires that an
embedded application configured with ENABLE_DEBUG is first built, downloaded, and running on the kit.

Normally, the GDB server application will be run in the background automatically while performing hardware
debugging with the Eclipse IDE for ModusToolbox™, so you don't need to start it separately. The GUI version of
the GDB Server described below can be used to troubleshoot or support command-line debugging, if required.

1. Connect the probe to the kit and both to the computer.

2. Configure the kit and application for hardware debugging.

3. Program the kit with the application.

Steps 4–6 and later depend on the debug probe that you are using:

If you are using a SEGGER J-Link debug probe:

4. Run the SEGGER J-Link GDB Server program and set up as shown in Figure 7.

5. Once setup is done, click OK to get the window shown in Figure 8.

6. Close the GDB server after the test is completed.

Figure 7 SEGGER GUI for Windows, Linux, and macOS

User Guide 13 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 8 Waiting for GDB connection

If you are using an OpenOCD debug probe such as a MiniProg4:

7. From the application build directory, navigate to the ModusToolbox™ install folder and enter the following

command:

<install dir>\tools_<X.Y>\openocd\bin\openocd -s <install-

dir>\tools_<X.Y>\openocd\scripts -s <workspace-

dir>/mtb_shared/wiced_btsdk/baselib/<device>/<branch>/platforms -f <device

name>_openocd.cfg

• Replace <install-dir> with the ModusToolbox™ install directory on your system.

• Replace tools_<X.Y> with the version of the tools folder found in your install directory.

• Replace <workspace-dir> with the workspace path where your application has been created,

usually in the user home directory in the 'mtw' folder.

• Replace <device>/<branch> with the directory name for your device such as 20819A1 and the git

branch subfolder created during application project creation.

• Replace <device name> with a valid device name such as CYW20819A1.

You should see a result as shown in Figure 9.

User Guide 14 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

8. Be sure to close the OpenOCD program when the test is complete.

Figure 9 Verifying Installation

User Guide 15 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

5.2 Using the Eclipse IDE for ModusToolbox™

The Eclipse IDE for ModusToolbox™ has launch configurations for each platform. These are the Launch items
listed in the Quick Panel. Note that this list will change depending on the application project and the platform

settings. Although the SWD probe used in the example is MiniProg4, the OpenOCD interface script is more
generic and supports any hardware with “KitProg3”. This is why the OpenOCD launch config names include

“KitProg3”.

Figure 10 Quick Panel

Launch configurations for the Eclipse IDE are generated for each new project using the information from

Makefiles and .xml files located in the < workspace-
dir>/mtb_shared/wiced_btsdk/baselib/<device>/<branch>/make/scripts/eclipse directory. Launch items are
configured by default for both J-Link and OpenOCD launch configurations. If a hardware debugger is attached
and a debug-enabled application is running on the board, debugging starts when you click one of the Debug

Attach launch configs. Once launched, clicking the “suspend” debug control button will halt the program
execution at the BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED() loop. This loop can be

exited by setting the loop control variable spar_debug_continue to non-zero and clicking the debug

resume button. At that point, your user application will begin running.

User Guide 16 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 11 Debug view after pause using SEGGER J-Link

An alternative way to access the debug launch configurations is by accessing the menu item Run > Debug
Configurations. This method also launches a dialog that can be used to modify or define new debug launch
configurations.

User Guide 17 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 12 Debug view after pause using OpenOCD

5.3 Using the Visual Studio Code IDE

ModusToolbox™ provides a customization method for Visual Studio Code (VS Code). Run the make vscode

command in an application directory to generate a .vscode subdirectory. This subdirectory contains *.json files
used by VS Code for configuration of IntelliSense, build tasks, and debugger launches.

1. Install ModusToolbox™ and VS Code.

2. Install “C/C++” and “Cortex-Debug” extensions in VS Code.

3. Create the application and dependencies (wiced_btsdk etc) either using the Project Creator GUI or from the

command line.

4. From the command line in the application directory, run one of the following commands to create the

.vscode subdirectory.

make vscode

or

make TARGET=<target> vscode

User Guide 18 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

This generates the following files.

Table 2

File Function

tasks.json Contains the build information

c_cpp_properties.json Provides build paths and defines to Intellisense

settings.json Provides paths to gdb and the gdb server

launch.json Provides debugger launch information

5. If using SEGGER J-Link, edit the global settings.json file to provide the path and file name of the GDB Server.

This file is in OS-dependent locations as follows:

• Windows: %APPDATA%/Code/User/settings.json

• macOS: $HOME/Library/Application Support/Code/User/settings.json

• Linux: $HOME/.config/Code/User/settings.json

For example, add:

"cortex-debug.JLinkGDBServerPath": "C:/Program Files (x86)/SEGGER/JLink_V648b/JLinkGDBServerCL".

6. In VS Code, select File > Open Folder (or, on the Welcome page, select Start > Open folder) to open the
application directory.

7. To build the application, select Terminal > Run Task or Terminal > Run Build Task.

8. To update the configuration, select “Utility: refresh” from Terminal > Build Task.

User Guide 19 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 13 make vscode

5.4 Use VS Code for hardware debugging

1. Edit the application Makefile to set ENABLE_DEBUG=1.

2. Clean and rebuild and program the application.

3. Ensure that the debug probe is attached.

Note: AIROC™ Bluetooth® SoC devices boot from the ROM and do not set up SWD support until early in
the application initialization (see Preparing the embedded application for debug). Because of

this, hardware debugging such devices always requires attaching the debugger to a running
process.

4. Select Run > Start Debugging to launch the hardware debug process.

User Guide 20 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 14 VS Code, application opened

Figure 15 VS Code J-Link debug session

User Guide 21 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

Figure 16 VS Code OpenOCD debug session

5.5 Hardware debugging from the command line

The command line interface can also be used to build applications, download them, launch GDB servers, and
run GDB with symbols to perform hardware debugging. Some make targets, make debug, make qdebug,

and make attach, have been provided to assist with command line hardware debugging. These make

targets must be run from the application directory. The following steps assume that a probe has connected the

host computer to the kit, the kit and application have been configured for hardware debugging, and the kit has

been programmed with the application.

1. Launch the GDB Server from the command line.

To launch the OpenOCD GDB Server from the command line, use make debug to perform a rebuild of the

application image if needed, or use make qdebug to launch directly. The Makefile recipe will perform the

command documented in Section 5.1 of this document.

To use the SEGGER GDB Server from the command line, define GDB_SERVER to be 'jlink':

make debug GDB_SERVER=jlink

In this case, the Makefile recipe will perform the following command line:

"C:\Program Files (x86)\SEGGER\JLink_V632g\JLinkGDBServerCL.exe" -USB -

device Cortex-M4 -endian little -if SWD -speed auto -noir -LocalhostOnly

User Guide 22 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

2. Run the GNU GDB command-line application in a separate console. You can perform this from the
application directory by using make attach. The recipe for this Makefile target will launch GDB using a

command line like: < install-dir>/tools_<X.Y>/ gcc-<version>/bin/arm-none-eabi-gdb.exe.

GNU GDB is an interactive command-line application. The following steps are demonstrated in the figure

below.

3. Connect GDB with the proper GDB server port with the command target remote

localhost:<port>.

Replace <port> with 3333 when using OpenOCD defaults, or 2331 for J-Link.

4. Load the symbol file for the application with symbol-file <application *.elf>. Use monitor halt to halt the

embedded application and l (as in list) to list the source code at that location.

5. To break out of the BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED() loop, set the

variable spar_debug_continue to non-zero with set var spar_debug_continue=1.

User Guide 23 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Using the hardware debugger

User Guide 24 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Troubleshooting

6 Troubleshooting

Here are some issues faced during hardware debugging sessions:

• When breakpoints have been set, and you perform a clean/build followed by the Debug launch (program
device and attach hardware debugger), the breakpoints are no longer operative. As a workaround, set
breakpoints after the rebuild, program, and attach sequence.

• The ending of debug sessions, when stopped at a breakpoint using the J-Link and OpenOCD probes show
different behaviors. When using the J-Link probe, execution continues after the session is ended. When

using the OpenOCD probe execution stops at the breakpoint when the session is ended.

• When using the OpenOCD probe and a device such as CYW20819A1 that supports only two hardware
breakpoints, the message "can't add breakpoint: resource not available" is displayed if two hardware

breakpoints are already in use and an attempt is made to single step.

• During a hardware debug session, an attempt to “restart the process” without first terminating and

restarting manually will fail. As explained in Section 4, the CYWxxxxx device reboots to ROM code that
initializes GPIO to a default state, disabling the SWD configuration. Restart cannot be supported.

• When using breakpoints or stepping in XIP (execute in place) code, typical for the CYW20819A1, use
hardware breakpoints. The code resides in flash memory and cannot be directly overwritten with soft

breakpoints. Be aware of the limited number of hardware breakpoints and watchpoints supported by the
devices.

• Immediately after Attach is launched, the debugger may stop at a location that does not show source code

and instead has a message like “Break at address "0x5121d0" with no debug information available, or
outside of program code”. In this case, use the Resume button (or select Run > Resume), and then halt the
execution with the Suspend button (or select Run > Suspend). Source code including the line with the

BUSY_WAIT_TILL_MANUAL_CONTINUE_IF_DEBUG_ENABLED() macro should then be displayed.

• When single-stepping through sources, progress is stopped, and a message is displayed like "Break at
address "0x7ecba" with no debug information available, or outside of program code”. This is typical when

stepping into a library or ROM code where no debug symbols are available. The way out is to select the
function further up the call stack and work with a subsequent breakpoint at that source code level.

• If the GDB server fails to launch, look for and close any other instances of the GDB client application that

may have been left running (arm-none-eabi-gdb.exe).

• Remember to “make clean” before rebuilding sources after making any edits to the Makefile.

User Guide 25 of 26 002-20504 Rev. *L

 2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices
ModusToolbox™

Revision history

Revision history

Document

version
Date of release Description of changes

** 2017-08-23 Initial release.

*A 2018-11-02 Updated for ModusToolbox™.

*B 2019-02-15 Updated title.

Changed ENABLE_JTAG setting to ENABLE_DEBUG.

Added references to Linux and macOS.

Added description for CYW208xx.

Added troubleshooting section.

*C 2019-04-23 Removed Associated Part Family.

*D 2019-06-11 Updates throughout the document.

*E 2019-09-26 Updated for ModusToolbox™ 2.0 and MiniProg4.

*F 2019-10-15 Added troubleshooting note.

*G 2019-11-20 Added additional description for command line debugging and a

troubleshooting note.

*H 2020-04-08 Added support for VS Code.

*I 2020-05-08 Added troubleshooting for Eclipse Debug launch.

*J 2021-11-18 Branding updates, added CYW307xx family.

*K 2022-01-13 Added CYW43012C0 to support list and description of hardware

debugging for kits with KitProg3 bridge.

*L 2022-03-02 Updated hyperlinks across the document.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-02

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.infineon.com/support

Document reference

002-20504 Rev. *L

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.infineon.com/support
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Hardware and software requirements

	2 Debug probe software setup
	2.1 Debug probe
	2.2 KitProg3
	2.3 Infineon MiniProg4
	2.4 SEGGER J-Link

	3 Kit setup
	4 Preparing the embedded application for debug
	5 Using the hardware debugger
	5.1 Validate the hardware setup
	5.2 Using the Eclipse IDE for ModusToolbox™
	5.3 Using the Visual Studio Code IDE
	5.4 Use VS Code for hardware debugging
	5.5 Hardware debugging from the command line

	6 Troubleshooting
	Revision history

