(infineon

Hardware debugging for AIROC™ Bluetooth®
System-on-Chip devices

ModusToolbox™

About this document

Scope and purpose

This document provides a description of hardware debugging support for ModusToolbox™ and Bluetooth® SDK
(BTSDK) software and AIROC™ CYWxxxxx devices.

Intended audience

Embedded developers using AIROC™ BTSDK solutions desiring to perform hardware debugging on CYWxxxxx
devices.

User Guide Please read the Important Notice and Warnings at the end of this document 002-20504 Rev. *L
www.infineon.com page 1 of 26 2022-03-02

ModusToolbox™
Table of contents

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

Table of contents

About this dOCUMENT......ciuuiiiiiiniiiiiiiiiiitiiiiaiitiittiiteiitsitseistastsessseissnes 1
Table Of CONtENES.c..ciuuiiiiiiiiiriiiiiiitiiiriiitiiiteittaitseieseisrastsestsessrsssssessses 2
1 INErOUCEION .rvuiiieiiiniirniiiniinniirnicruiirneiireieraesrsessssssrssnsssnss 3
1.1 Hardware and software reqUIrEMENTSccvecierieiieieeeeeeeeeesee et e st e bessn e sasseesnanns 3
2 Debug probe SoftWare SEtUP....ccccciiuciiiieiineiiniiainestesisesresiacsestascaesrescsessesssscsesssssssssssssscssssassassns 5
2.1 DEDUG PrODE ...ttt ettt ettt ettt st et b e et eea et e bt et e b e sae et e eaeeaenne 5
2.2 KIEPTOZS ettt st ettt s e e st s b st e s e s bt e s st e sabesssesssessbaesseessaesasesasesssasssasssaenssesnsesssessseeseensees 5
2.3 INFINEON MINIPIOZA ...ttt ettt et ettt et e et et e sse s s e s se e e et e sseessessesneassasseessesseessasesssensensesssenns 6
2.4 SEGGER J-LINK c.ttittiettieieiteeieesieeseestestesstessteesteesaessaesseesseessaessnesssesssassesssesssasassesssesssesssesssesssnesseesssanns 7
3 It SEUUP cueeeeinnieirnieeceececenreceecancestecescsscassessscsscascassessscsscassasssssssassasssssssassasssssssassassassssnssnssnsses 8
4 Preparing the embedded application for debug.......ccceiiuiineiiniincniiniincciiiecceninicesieiisccsesssscsens 9
5 Using the hardware debUZZer.....cccuiiuiiiiniiniieiiniiiiieiiaiiesianiaesiestacsestescsessssssscsessesssssssssassansse 12
5.1 Validate the NardWare SETUP......c.ecceiieiceeceece ettt et sre e sbe e sbe e sraesrteste s teesbaessaesnsesnns 12
5.2 Using the Eclipse IDE for MOAUSTOOIDOX™couiierieiririninenrenienienietesteeee st ssesse s e e seenesaens 15
5.3 Using the Visual Studio COAE IDE.........ccoviriirierieieniteterieeteie sttt sttt e st sae st et e sae et e sbesssesaeessenees 17
5.4 Use VS Code for hardware debUZEINgcceevuevierieiiiiiirieireeenesteteteteee sttt sttt saens 19
5.5 Hardware debugging from the command liN€.......cc.ccueiririrerininieneieceereeeseeee et 21
6 TroUbLleSROOtING ...cvuiiuiiriiiiieiiniineiieiineinesieiiaesresiaisestescaessestascaesssscsesssssascasssssssssssssassasssnsssssses 24
REVISION NISTOIY.u.iuiiiiiiiiiiuiieieiieiiniitiicesianieceecentastsssscscassssssssscsssssssssscssssssssssssscssssssssssssssssssssssssssssas 25
User Guide 2 of 26 002-20504 Rev. *L

2022-03-02

ModusToolbox™
Introduction

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

1 Introduction

ModusToolbox™ provides support for source-code-level debugging of applications running on AIROC™
Bluetooth® System-on-Chip (SoC) devices in the CYW207xx, CYW208xx, CYW43012C0, and CYW307xx chip
families, referred to as CYWxxxxx in the rest of this document. Although this debugging technique often
conflicts with the real-time requirements of loT, it can provide valuable insight by stopping the CPU at
breakpoints or watchpoints and providing the ability to check on the state of code and data using source code
symbols.

The ModusToolbox™ kit hardware supports source-code-level debugging via a Serial Wire Debug (SWD)
interface that provides a means for a development PC to control the execution of the CYWxxxxx Arm® CPUs.
Third-party JTAG/SWD debug probes may be used to interface between the development PC and the debug
interface hardware.

Some kits use built-in debug probes and do not require additional hardware. The PC connected to the debug
probe uses associated GDB server software. This server provides a socket interface to the GNU debugger (GDB),
allowing it to control the debug interface and Arm® CPU. ModusToolbox™ coordinates the interfaces between
these entities: the CYWxxxxx Arm® CPUs, the debug probe and GDB server, GDB, and the symbols GDB needs to
translate between source code symbols and hardware memory addresses, registers, and so on.

This document provides a description of hardware debugging support for ModusToolbox™ software and
CYWxxxxx devices. This document describes the generic tools, setup, and techniques. Other kit-specific
documents are provided to describe those exact implementations.

The hardware interface for the Debug Access Port is provided to the Arm® CPU cores within the CYWxxxxx
devices. These Arm® architecture devices use a 2-pin SWD interface. The SWD pins are SWDIO and SWDCK. Many
debug probes support SWD.

Current hardware debug support for CYWxxxxx devices requires either a SEGGER J-Link probe or an OpenOCD-
supported probe.

1.1 Hardware and software requirements

The following items are required to debug an application developed for Infineon AIROC™ SoCs.

Table 1 Hardware reference
Item Description
Reference design A hardware reference design board based on an Infineon
board CYWxxxxx SoC.
One of these: Hardware reference No additional hardware dongle is needed when using kits
design board using with PSoC™ 5LP-based KitProg3 device, for example
KitProg3 USB/serial CY8C5868LTI-LP039.
bridge
SEGGER J-Link SEGGER provides several models of JTAG-SWD debug
probes that are compatible for hardware debugging. See
www.segger.com/downloads/jlink.
Infineon MiniProg4 See
Programmer/Debugger https://www.infineon.com/cms/en/product/evaluation-
boards/cy8ckit-005/
User Guide 30f26 002-20504 Rev. *L

2022-03-02

https://www.segger.com/downloads/jlink
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-005/

ModusToolbox™
Introduction

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

Item Description
A computer (Windows, macOS, or Linux) that hosts the
following software items:

pC e ModusToolbox™
e AGDB server and debug probe interface software. For

this document we consider the SEGGER GDB server or
OpenOCD.

Debug probe USB cable Used for PC interface to debug hardware.

GDB Server software OpenOCD software is included with ModusToolbox™.
SEGGER GDB Server is available at
www.segger.com/downloads/jlink.

Debug probe 10-pin connector/adapter An adapter may be needed to match from a 20-pin JTAG
interface on the debug probe to a 10-pin SWD interface on
the development kit.

User Guide 4 of 26 002-20504 Rev. *L

2022-03-02

https://www.segger.com/downloads/jlink

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Debug probe software setup

2 Debug probe software setup

2.1 Debug probe

Purchase debug probes and software separately if needed. SEGGER provides the J-Link probe that has been
demonstrated to work well with CYWxxxxx devices. Other debug probes, such as the Infineon MiniProg4, are
also compatible. Kits with the KitProg3 USB-serial bridge provide similar built-in functionality as the MiniProg4.

The instructions and screen shots are similar for Windows, Linux, and macOS operating systems unless
otherwise noted.

2.2 KitProg3

KitProg3 software setup is provided with ModusToolbox™, along with documentation on updates and support.

& Device Manager - O X

File Action View Help
&5 @ BHE B

P Network adapters A
Q Portable Devices
v @ Ports (COM & LPT)
#§ KitProg3 USB-UART (COM10)
#§ KitProg3 USB-UART (COM9)
™ Print queues
D Processors
7| Proximity devices
B9 Security devices
@ Smart card readers
lt Software components
B Software devices

i Sound, video and game controllers
S Storage controllers
E= System devices
i Universal Serial Bus controllers
v ! Universal Serial Bus devices
§ HPUSB-C Dock G5
§ KitProg3 CMSIS-DAP
i Vendor Interface
' USB Connector Managers v

User Guide 50f26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Debug probe software setup

2.3 Infineon MiniProg4

Follow the instructions provided with MiniProg4 for installation. ModusToolbox™ provides the supporting
software.

& Device Manager — O *
Eile Action View Help
bl ARall 7 NoclicS
€3 Bluetooth A
® Cameras
3 Computer
- Disk drives
& Display adapters
¥ Firmware

= Keyboards

@ Mice and other pointing devices

[Menitors

@ Metwork adapters

d Portable Devices

v Ports (COM &LPT)

ﬁ Intel(R) Active Management Technology - SOL (COM3)
i MiniProg4 USB-UART (COM18)
f§ WICED HCI UART (COMT11)
5 WICED Peripheral UART (COM12)

™ Print queues

=1 Printers v

Figure 1 Device Manager with MiniProg4 and AIROC™ kit

User Guide 6 0f 26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon
ModusToolbox™
Debug probe software setup

2.4 SEGGER J-Link
Do the following to install the SEGGER J-Link GDB Server:

1. Download the software from www.segger.com/downloads/jlink and look for “J-Link Software and
Documentation Pack”.

2. Once the software is installed, connect J-Link to the kit’s debug connector and then plug the J-Link into a
USB port on the computer. When USB enumeration completes, the J-Link device should appearon a
Windows PC in the Device Manager as Figure 2 shows.

g= Device Manager
File Action View Help
(o= || E|HE &

{M Systern devices

[* % i

4§ Universal Serial Bus controllers

@ Generic USB Hub

@ Genenic USB Hub

§ Genenc USB Hub

§ Genenic USB Hub

¢ Genenc USB Hub

¢ Generic USB Hub

@9 Intel(R) 6 Series/C200 Series CH
Intel(R) 6 Senes/C200 Series CH |

J-Link driver Properties

General | Driver .Datails

J-Link dnver

Driver Provider: Segger

-Link dri Driver Date: 1/26/2017
-Link driver
9 USB Composite Device Drtver Version 27080
9 USB Compuosite Device Digital Signer; Mm_:sd't Windows Hardware Compatibilty
9 USB Composite Device Publishier
@ USE Composite Device Drtver Detals Ta view detalls about the diverfies.
9 USB Root Hub
L4 U%? F_zu ot H_Uh Update Driver... To update the driver software for this device
g B Rl Back Drive ¥ the device fails after updating the driver, rol
| back to the previously instaled driver
Disable Disables the selected device.
Uningtal To uninstall the driver (Advanced)

OK Cancel

L -

Device Manager listing J-Link device

Figure 2

3. You can check the SEGGER J-Link hardware connection on a Linux PC using 1 susb on a terminal to list USB
devices. On a macOS operating system, you can use the System Information utility.

Power
Printers
SAS
SATA/SATA Express
SRl
Storage
Thunderbolt
UsB

Network
Firewall
Locations
Volumes
WWAN
Wi-Fi

Software
Accessibility
Applications
Components
Developer
Disabled Software

ac mini new > Hardware » USB » US

mini

USB Device Tree

USB 3.0 Bus
J-Link
IR Receiver
BRCM20702 Hub
Bluetooth USB Host Controller
Hub
Cs1794

J-Link:

Product ID: 0x0101

Vendor ID: 0x1366

Version: 1.00

Serial Number: 000050105153
Speed: Up to 480 Mb/sec
Manufacturer: SEGGER

Location ID:
Current Available (ma): 500
Current Required (mA): 100
Extra Operating Current (mA): 0

0x14600000 / 20

3.0 Bus > J-Link

Figure 3 Using System Information utility

002-20504 Rev. *L
2022-03-02

User Guide 7 0of 26

https://www.segger.com/downloads/jlink

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon
ModusToolbox™
Kit setup

3 Kit setup

Each Infineon loT development kit has particular setup requirements for the debug interface. Many kits use the
KitProg3 USB-serial bridge chip, for example the CYW920835M2IPAL. These kits do not require a dongle for
hardware debugging. Some have a dedicated debug probe socket, either 10-pin or 20-pin. A few kits do not
have a dedicated debug socket, but will have pin headers that can be “fly-wired” to a debug probe connector.
Besides the physical connection, each board may have some switch or jumper settings necessary to support
hardware debugging. Kit-specific documents (kit user guides, for example) are available to describe the exact
requirements.

YPRESS

#00:80192.01 Rev.3.1 3
v

1ebiey
Wo2106628 Mmm

T :
wee GBCYPRESS ¢
Error .
MiniProg4 .,
e e

Custom App

: 3 5 M O) S K- %@
Figure 4 Typical kit with with and without hardware debug probes
User Guide 8 of 26 002-20504 Rev. *L

2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

ModusToolbox™
Preparing the embedded application for debug

4 Preparing the embedded application for debug

By default, CYWxxxxx devices do not enable SWD interface pins. These devices boot from the ROM code and do
not have an opportunity to set up SWD pins until the ModusToolbox™ embedded application is loaded and
executed. This means that SWD support must be enabled as a build option so that code will be compiled in to
configure pins during the application startup sequence to support SWD. The code necessary to configure GPIOs
for debugger support is defined in a macro called SETUP_APP FOR DEBUG IF DEBUG ENABLED().

Because the pins must be configured prior to attaching the debugger, the application is built to runin a
software loop immediately after configuring the GPIO for debug support so that you can attach to the debugger
before the main application code begins to execute. The code for this loop is defined in a macro called

BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED().

These macros are defined in the source code file <workspace
dir=/mtb_shared/wiced_btsdk/baselib/<device>/<branch>/WICED/ common/spar_utils.h.

By default, these macros are enabled in an early part of application initialization, just after pins are configured
inwiced platform init ().Dependingon the application,it may make sense to move them to another
location. Some critical points to consider are whether any GPIO configuration occurs in the application that
would be executed subsequent to the debug setup. If the GPIO used for debug have their configuration
overwritten by other code, the debug session will not work. Also, if the wait loop is executed in a time-critical
portion of the application, the time-critical functionality could be broken.

To set up the build to enable the desired pins for SWD using an IDE, navigate to the application source files,
open the application Makefile for editing, and set ENABLE DEBUG to ‘1’. Note that the SWD pins are defined
for each kit and are configured by the macro definitions in spar_utils.h. The macro definitions may need to be
modified to change the pins that will be used for SWD. The pin configurator is not used because the pin
functionality depends on setting or unsetting ENABLE _DEBUG. After editing the Makefile, be sure to make
clean to force arebuild of all sources if they were previously compiled.

Note: The source-code-level debugging depends on source code and debug symbol availability. You can
use the embedded application and source code libraries supplied for ModusToolbox™ for source
code debugging. Debug symbols for code and data defined in the device ROM or pre-compiled
libraries are not provided. Hardware debugging through these portions will show disassembled
machine code.

User Guide 90f 26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon
ModusToolbox™
Preparing the embedded application for debug

Eile Edit Navigate Search Project Run Window Help

» Configurators

~ Documentation

~ Launches
Q.’} OTA_20819EVB0Z.ota_firmware_upgrade Attach_JLink
{; (OTA_20819EVB02.ota_firmware_upgrade Attach_KitProg3

< >

CDT Build Consele [OTA_20819EVEO2.ota_firmware_upgrade]

H-ER B8 B | b |=®|Si4-0- U~ @D & -! o v
| & %
I Proje... 22 Debug Regist. Pet = 40 @® "makefile % = 8 Iz Outline 2 = 0
BlS # ~ wlE -
< P # App features/defaults)
v 25 > OTA_20819EVBOZ.ota_firmware_upgrade [OTA_20219E1 . ~ 0P ifeq (SIWHICHFILE) trur &
@l Includes OTA_FW_UPGRADE?-1 i S{info Processing S
(#% > .mtbLaunchConfigs BT_DEVICE_ADDRESS?=default & APPNAME
5+ settings UART?=AUTO ® TOOLCHAIN
& build ?;i;;:xv UART @ CONAG
(Z7 secure @ VERBOSE
[ota_firmware_upgrade.c ® TARGET
[wiced_bt_cfg.c # wait for SWD attach @ SUPPORTED_TARGETS
B .cproject ifeq ($(ENABLE_DEBUG),1) ® TARGET_DEVICE_MAP
B project cvagip_neFINEE+=-DENABLE_DEBUG=1 & CV TARGET DEVICE
G > makefile v end v 09 ifeq (S(filter S(TARGET),
< > CY_APP_DEFINES+=\ i S{error TARGET S(T&
-DWICED_BT_TRACE_ENABLE @ SOURCES
B8 Qui.. | 5] Doc.. (0-Vani.. €fBxp.. % Bre. = O & INCLUDES
ifeq ($(TARGET),CYHI28786HCDEVAL) © DEFINES
USE_256K_SECTOR_SIZE ?= @
ifeq ($(USE_256K_SECTOR_SIZE),1) : EEESGESLECT
™ CY_APP_DEFINES += -DUSE_256K_SECTOR_SIZE
ModusToolbox E endif -7 - ® CXXFLAGS
endif # TARGET @ ASFLAGS
~ Start
® LDFLAGS
o ifeq ($(OTA_Fu_UPGRADE),1) & LDLES
New Application OTA_SEC_FuW_UPGRADE ?- @ o LNKER SCRPT
’ ifeq ($(OTA_SEC_FU_UPGRADE), 1) .
Search Online for Code Examples 1req i
o Search Online for Code Example CY_APP_DEFINES += -DOTA_SECURE_FIRMWARE_UPGRADE © PREBUILD
~ OTA_20819EVBO2.0ta_firmware_upgrade endif = & POSTBUILD v
< > < >
&, Build OTA_20819EVE02.0ta_firmware_upgrade Application
onsole Problems Progress emo e e
[le &5 P P = O
(}' Clean OTA_ EVB02.ota_firmware_upgrade Application -
SR Y AN = Rl e R

Figure 5 Setting the ENABLE_DEBUG feature

Now you can build, program, and download the application.

Similarly, to build from the command line, use the make command line option ENABLE DEBUG:

make ENABLE DEBUG=1 program

Additional command line options may be needed depending on the application, CY TOOLS PATHS path, and
platform being used.

User Guide 10 of 26 002-20504 Rev. *L

2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Preparing the embedded application for debug

E feygdrive/c/git/mtb2/mtb-examples-CYWS20813EVE-02- btsdk-ble/apps/ble/hello_client - O *

$ make ENABLE_DEBUG=1 program

Initializing build: BLE_HelloClient Debug CYW928819EVB-82 GCC_ARM

-C TARGET
819EVE
ering directory '/cygdrive/c/git/mt

Building 3 fi
Compiling i o_client.c
Compiling i wiced bt cfg.c
Compiling d file 1ib_installer.c
i BLE HelloClient.elf

echo "Programming target device ...
Programming target device ...

Detecting serial port ...
Found serial port : COM4

Downloading FW ...

ownload succeeded
echo "Programming complete
Programming complete

Figure 6 Command line build

User Guide 110f26 002-20504 Rev. *L
2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

5 Using the hardware debugger

Before using the debugger, do the following:

1. Connect the hardware debugger to the kit.
2. Configure the kit for debugging.
3. Build, program, and run an application that has debugging enabled on the kit.

Program execution stops progressing at the wait macro
BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED (). See the kit-specific documents for
details on the full setup.

5.1 Validate the hardware setup

The SWD interface can be tested independently from the ModusToolbox™ environment. This requires that an
embedded application configured with ENABLE DEBUG is first built, downloaded, and running on the kit.
Normally, the GDB server application will be run in the background automatically while performing hardware
debugging with the Eclipse IDE for ModusToolbox™, so you don't need to start it separately. The GUI version of
the GDB Server described below can be used to troubleshoot or support command-line debugging, if required.

1. Connect the probe to the kit and both to the computer.
2. Configure the kit and application for hardware debugging.
3. Program the kit with the application.

Steps 4-6 and later depend on the debug probe that you are using:
If you are using a SEGGER J-Link debug probe:

4. Runthe SEGGER J-Link GDB Server program and set up as shown in Figure 7.
5. Once setup is done, click OK to get the window shown in Figure 8.
6. Close the GDB server after the testis completed.

B SEGGER J-Link GDEB Server V6.32g Config % | 8 SEGGER J-Link GDB Server V6.34h Config ® @ SEGGER J-Link GDB Server V6.34h Config
. ; Connection to J-Link
Connection to Jink Connection to J-Link
O use Serial No.
@ UsB [serial No. @ USB Serial No.
TCP/IP
TCP/IP
O 1crP £
Target device Target device
Target device
Cortex-M4
Cortex-M4
Cortex-M4 [] E] B
Litde Endian ~ Little Endian % Little Endian u
Target interface
Targetinterface Target interface -
- SWD
swD = [swo s a
. . Speed Misc. settings
Speed Misc, settings Speed Misc. settings

O Auto Selection

Adaptive clocking Init registers

= @ Auto Selection
® Auto Selection [1nit registers = Init registers

O Adaptive docking Adaptive clocking Fixed = 4000 kHz Localhost only
Localhost anly | Localhost only

O Fixed |4000 kHz Fixed + | kHz
Command line option
Command line option Command line option - .
-select USB -device Cortex-M4 -endian little -if SWD -speed
-USB -device Cortex-M4 -endian little 4f SWD -speed auto _select USB -device Cortex-M4 -endian little -if SWD auto -nair -LocalhostOnly
-noir -LocalhostOnly -speed auto -noir -LocalhostOnly
OK Cancel
oK Cancel [oK l [Cancel

Figure 7 SEGGER GUI for Windows, Linux, and macOS
User Guide 12 of 26 002-20504 Rev. *L

2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

EJ SEGGER J-Link GDE Server Y6.32g — b
File Help
GDB |Waih’ng for connection | I [stay on top
Jink | Connected |] [swo | | 4000 ktz | 21 show log windaw
Device [Cortex4 (Halted) | [] [3.35v | [ittie endian | (] Generate logfile

[verify download

Clear Log

Connecting to J-Link...
J-Link is connected.
Firmware: J-Link V10 compiled Sep 4 2018 11:24:Z21
Hardware: V10.10

5/N: 50105153

Featurei(s) : GDB

Checking target woltage...
Target wvoltage: 3_.35 ¥V
Listening on TCP/IP port 2331
Connecting to target. ..
Connected to target

Waiting for GDB connection. ..

0 bytes downloaded Connected to target

Figure 8 Waiting for GDB connection

If you are using an OpenOCD debug probe such as a MiniProg4:

7. From the application build directory, navigate to the ModusToolbox™ install folder and enter the following

command:

<install dir>\tools <X.Y>\openocd\bin\openocd -s <install-

dir>\tools <X.Y>\openocd\scripts -s <workspace-

dir>/mtb shared/wiced btsdk/baselib/<device>/<branch>/platforms -f <device

name> openocd.cfg
e Replace <install-dir> withthe ModusToolbox™ install directory on your system.
e Replace tools <X.Y>with the version of the tools folder found in your install directory.

e Replace <workspace-dir> with the workspace path where your application has been created,
usually in the user home directory in the 'mtw' folder.

e Replace <device>/<branch> with the directory name for your device such as 20819A1 and the git
branch subfolder created during application project creation.

e Replace <device name> with avalid device name such as CYW20819A1.

You should see a result as shown in Figure 9.

User Guide 13 0f 26 002-20504 Rev. *L
2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon

ModusToolbox™
Using the hardware debugger

8. Besureto close the OpenOCD program when the test is complete.

@ NRESET = 1

atchpoints

Figure 9 Verifying Installation

14 of 26 002-20504 Rev. *L

User Guide
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™

Using the hardware debugger

5.2 Using the Eclipse IDE for ModusToolbox™

The Eclipse IDE for ModusToolbox™ has launch configurations for each platform. These are the Launch items
listed in the Quick Panel. Note that this list will change depending on the application project and the platform
settings. Although the SWD probe used in the example is MiniProg4, the OpenOCD interface script is more

generic and supports any hardware with “KitProg3”. This is why the OpenOCD launch config names include
“KitProg3”.

mtw - HAL-20819EVB02.gpio/hal_gpic.c - Eclipse IDE for MedusToolbox
File Edit Source Refactor MNavigate Search Project Run Window

Tmilhe [®~& - @

5 Project Expl... 32 | A% Debug i Registers & Peripherals = O
=

k%- > HAL-20819EVB02.adc [HAL-20813EVED2
=5 > HAL-20819EVBO2. gpio [HAL-20819EV!
> HAL-20819EVB02.i2c_master [HAL-2
> HAL-20819EVBO2.low_power [HA
> HAL-20819EVBO2.puart [HA
> HAL-20819EVB0Z.pwm [HAL
» wiced_btsdk [wiced_btsdk release-v2.4.0-rc4]

i

< >

Quick Panel = B8

Eclipse IDE for
ModusToolbox™

+ Start

New Application

o Search Online for Code Examples
+ HAL-20819EVB02.gpic

Q Build HAL-20819EVB0Z.gpic Application
9 Clean HAL-20819EVB02.gpio Application
~ Launches

5 HAL-20819EVBOZ.gpio Attach_JLink

4 HAL- gpio Attach_KitProg3
= HAL- gpio Debug_JLink
= HAL- gpio Debug_KitProg3
@, HAL-208 02.gpio Program

&, Generate Launches for HAL-20819EVB02.gpio
b Tools

} Documentation

=5 HAL-20819EVB0Z.gpio

Figure 10 Quick Panel

Launch configurations for the Eclipse IDE are generated for each new project using the information from
Makefiles and .xml files located in the < workspace-
dir>/mtb_shared/wiced_btsdk/baselib/<device>/<branch>/make/scripts/eclipse directory. Launch items are
configured by default for both J-Link and OpenOCD launch configurations. If a hardware debugger is attached
and a debug-enabled application is running on the board, debugging starts when you click one of the Debug
Attach launch configs. Once launched, clicking the “suspend” debug control button will halt the program
execution atthe BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED () loop. Thisloop can be
exited by setting the loop control variable spar debug continue to non-zero and clicking the debug
resume button. At that point, your user application will begin running.

User Guide 150f 26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon

ModusToolbox™

Using the hardware debugger

Fle Edit Source Refactor Navigste Search Project Run Window Help
A | ®~ /- @i 0] @ 4 2 2 ¢ | Site~0-Qu-i®e & i
% Debug 53 = 0
[iv =

~ [£] HAL_20819EVB02.gpio Attach_Link [GDB SEGGER J-Link Debugging]
w [HAL_GPIO.elf

/* Initialize GPIOs with the default configuration */
for (i = @; 1 < gpio_count; i++)

wiced_hal_gpio_configure_pin(*platform_gpic[i].gpie, (platform_gpio[i].cenfig), pla

= [uick Access] %‘|7§$
=0 ® = 08

~

] wiced_platform.c 2

¥ e
~ o Thread #1 57005 (Suspended : Step) %
= wiced_platform_init() at wiced_platform.c:119 02511750 '+ disabl tchd . - it ttach if ENAB
- § /* disable watchdog, set up SWD, wait for attach if ENABL =
pplication_start_internal() at spar_setup.c:43 0x5116ae SETUP_APP_FOR_DEBUG, IF_DEBUG_ENABLED();
0:3ef26 BUSY_WAIT TILL MANUAL CONTINUE IF DEBUG_ENABLED(); e vA
sl JLinkGDBServerCL.exe 1 e v
B arm-none-eabi-gdb 4 ©
< 2> < >
B Consale &3 = 0
[| B [BE B S| ™ 8~ 9 ~
HAL_20819EVB02.gpic Attach_JLink [GDE SEGGER J-Link Debugging] JLinkGDBServerCL. exe
SEGGER J-Link GDB Server V6.48b Command Line Version ~

JLinkARM.d11 V6.48b (DLL compiled Aug 2 2019 1@:18:25)

Command line: -if swd -device Cortex-M4 -endian little -speed auto -port 2331 -swoport 2332 -telnetport 2333 -mi

Accept remote connection:
Generate logfile:

----- GDB Server start settings-----

GDBInit file: none
GDB Server Listening port: 2331
5W0 raw output listening port: 2332
Terminal I/0 port: 2333

localhost only
off

Verify download: of f

Init regs on start: of

silent mode: off

Single run mode: on
Target connection timeout: @ ms
—————— J-Link related settings------

J-Link Host interface: UsB
B8 Quick.. =) Docum... (= Veriables 2 € Bxpres.. 9 Breakp.. = O gﬁzt ig[ﬂﬁgi files none
= | il A Target related settings------

o Target device: Cortex-M4

Value Target interface: SWD

00 Target interface speed: auto
™ BEgned int 0 Target endian: little
o= i uint32_t 10

Connecting to J-Link...

J-Link is connected.

Firmware: J-Link V1@ compiled Jul 23 2819 13:46:189
Hardware: V18.18

5/N: 58185153

Feature(s): GDB

Checking target voltage...

Target voltage: 3.33 V

Listening on TCP/IP port 2331

Connecting to target...Connected to target
<

Writable Smart Insert 19:1

Figure 11

Debug view after pause using SEGGER J-Link

An alternative way to access the debug launch configurations is by accessing the menu item Run > Debug
Configurations. This method also launches a dialog that can be used to modify or define new debug launch

configurations.

User Guide

16 of 26

002-20504 Rev. *L

2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

File Edit Source Refactor MNavigate Search Project Run Window Help

Ju g [B-&-E@iv 0 B33 2R | &t~ 0 -Q-i®E 5 - SRR TRA R R I [quick acees] | g5 | |46
% Debug 52 = 0 [€] wiced_platform.c &3 =8 ® =0

lize GPIOs with the default configuration */ o

i = : : .
; 1 < gpio_count; i++)

v [£] HAL_20819EVB02.gpio Attach_KitProg3 [GDE CpenOCD Debugging] LA]
~ [HAL_GPIO.elf wiced_hal_gpio_configure_pin(*platform_gpio[i].gpic, (platform_gpio[i].config), pla ¥ e
~ o Thread #1 1 (Mame: Current Execution) (Suspended : Signal : SIGINT:Inten %*®
= wiced_platform_init() at wiced_platform.c:119 02511750 /* disable watchd . SWD. wait for attach if ENABLE DEBUG */
= application_start_internal(] at spar_setup.c:43 0x5116ae sETU;ERP;eF;:;:-;EEE?I;%E;EG ‘E‘NAB‘L‘EB(‘) ror aTEach 1T EHARLE DR ! -
= 0aef2s BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED(); o ova
»| openocd.exe H s
B arm-none-eabi-gdb v @ Vv
< 2> £ >
El Console £ = B
= BB E® 25~

HAL_20819EVB02.gpic Attach_KitProg3 [GDB OpenOCD Debugging] cpenocd.exe
Started by GNU MCU Eclipse ~
Open On-Chip Debugger 8.16.8+dev-2.2.8.249 (2819-89-18-18:57)
Licensed under GNU GPL v2
For bug reports, read
http://openccd.org/doc/doxygen/bugs.html
adapter speed: 18688 kHz
adapter speed: 1568 kHz
cortex_m reset_config sysresetreq
force hard breakpoints
Started by GNU MCU Eclipse
Info : Listening on port 6666 for tcl connections
Info : Listening on port 4444 for telnet connections
Info : CMSIS-DAP: SWD Supported
Info : CMSIS-DAP: FW Version = 1.2.8
Info : CMSIS-DAP: Interface Initialised (SWD)
Info : SWCLK/TCK = 1 SWDTO/TMS = 1 TDI = @ TDO = @ nTRST = @ nRESET = 1
Info : CMSIS-DAP: Interface ready
Info : WTarget = 3.323 V
Info : clock speed 1580 kHz
Info : SWD DPIDR @x2ba@l477
Info : CYW2@8819A1.cpu: hardware has 2 breakpoints, 1 watchpoints

< >

@ Quick... =] Docum... ()= Variables 32 €7 Expres.. @g Breakp.. = 8

= ‘ e v Info : CYW2@819A1.cpu: external reset detected
Info : Listening on port 3333 for gdb connections
Name Type Value Info : accepting 'gdb' connection on tep/3333
(9= spar_debug_continue volatile UINTE 00 target halted due to debug-request, current mode: Thread

XP5R: Bx61l8@8800 pc: @x@051175@ psp: BxB0227688

(9= interrupt_save unsigned int 0 ©
5 5 ===== arm v7m registers
o uint32_t 1 (8) re (/32): BxPEEE0000
(1) r1 (/32): @xe0320000
. 2) r2 (/32): @x00000000
Name : s?TereII:uchontmua ~ 533 3 5/32;: P —————
3321?3 ,{g‘ (4) r4 (/32): exeees3a7l
Decimal s (S) r5 (/32): @x@EB7DECY
A (6) ré (/32): GxBOBEGEBA
g::;’;% (7) r7 (/32): Bxees51189@
octalrdl (8) r8 (/32): @xeee83271

i v (9) ro (/32): ©xBOROGE00 v

Figure 12 Debug view after pause using OpenOCD

5.3 Using the Visual Studio Code IDE

ModusToolbox™ provides a customization method for Visual Studio Code (VS Code). Run themake vscode
command in an application directory to generate a.vscode subdirectory. This subdirectory contains *json files
used by VS Code for configuration of IntelliSense, build tasks, and debugger launches.

1. Install ModusToolbox™ and VS Code.
Install “C/C++” and “Cortex-Debug” extensions in VS Code.

3. Create the application and dependencies (wiced_btsdk etc) either using the Project Creator GUI or from the
command line.

4. From the command line in the application directory, run one of the following commands to create the
.vscode subdirectory.
make vscode
or
make TARGET=<target> vscode

User Guide 17 of 26 002-20504 Rev. *L
2022-03-02

Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices

ModusToolbox™

Using the hardware debugger

This generates the following files.

(infineon

Table 2
File Function
tasks.json Contains the build information

C_cpp_properties.json

Provides build paths and defines to Intellisense

settings.json

Provides paths to gdb and the gdb server

launch.json

Provides debugger launch information

5. If using SEGGER J-Link, edit the global settings.json file to provide the path and file name of the GDB Server.

This file is in 0S-dependent locations as follows:

e Windows: %APPDATA%/Code/User/settings.json

e macO0S: SHOME/Library/Application Support/Code/User/settings.json

e Linux: SHOME/.config/Code/User/settings.json

For example, add:

"cortex-debug.JLinkGDBServerPath": "C:/Program Files (x86)/SEGGER/JLink_V648b/JLinkGDBServerCL".

. InVS Code, select File > Open Folder (or, on the Welcome page, select Start > Open folder) to open the
application directory.

7. To build the application, select Terminal > Run Task or Terminal > Run Build Task.

. To update the configuration, select “Utility: refresh” from Terminal > Build Task.

User Guide 18 of 26 002-20504 Rev. *L

2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

E /cygdrive/c/git/btsdk240/BT-5DK - O *

fwof o fwiced_btsdk/dev-kit/bsp/TARGET_CYW3 19EVE-82 vscode OTA_FW _UPGRADE=1 CY_APP_DEFINES+="

make[1]: Entering directory '/cygdrive/c/git/b 8/BT-5DK/wiced_bts

Prebuild operation
Commencing build o

19EVE-82 GCC_ARM

Applying fil .
Auto-discovery co

ride with command line) to build for hardware debug
, rebuild application, program, attach debugger, then
art debugging, or F5.
See document "WICED Hardware Debugging for Bluetooth Kits™ for details

Figure 13 make vscode

5.4 Use VS Code for hardware debugging

1. Editthe application Makefile to set ENABLE DEBUG=1.
2. Clean and rebuild and program the application.
3. Ensure that the debug probe is attached.

Note: AIROC™ Bluetooth® SoC devices boot from the ROM and do not set up SWD support until early in
the application initialization (see Preparing the embedded application for debug). Because of
this, hardware debugging such devices always requires attaching the debugger to a running
process.

4. Select Run > Start Debugging to launch the hardware debug process.

User Guide 19 of 26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

File Edit Selection View Go Run Terminal Help # makefile - beacon - Visual Studio Code

EXPLORER makefile @

OPEN EDITORS 1 UNSAVED makefile
)
ifeq ($(TARGET),CYWOM2BASE-43012BT)
OTA_FW_UPGRADE?=0
else
OTA_FW_UPGRADE?=1
endif
backup BT_DEVICE_ADDRESS?=default
{} .cortex-debug.peripherals.statejson UART?=AUTO
i} i XIP?=xip
0)) Tesfer TRANSPORT ?=UART
I export - ENABLE_DEBUG?=1

{} settings.json

> .mtbLaunchConfigs

~ .vscode

{} tasksjson ifeq ($(ENABLE_DEBUG),1)
build CY_APP_DEFINES+=-DENABLE_DEBUG=1
GeneratedSource endif
secure
cpraject PROBLEMS OUTPU EBUG CONSOLE TERMINAL 1:powershell v + [0 @

.project Windows PowerShell

beacon.c Copyright (C) Microsoft Corporation. All rights reserved.
gL PS C:\git\btsdk240\BT-SDK\apps\ble\beacon>

makefile

openocd.tc

read_me.txt

wiced_bt_cfg.c

> OUTLINE
P btsdk24or & ®@1A0 In87.Col 11 TabSize:4 UTF-8 IF Makefile & [

Figure 14 VS Code, application opened

File Edit Selection View Go Run Terminal Help wiced_platform.c - beacon - Visual Studio Code

RUN [Attach Debug (Link) v 45 b 2 ¥ T 9O Fcx [N M

v VARIABLES c: > git > btsdk240 > BT-SDK > wiced_btsdk > dev-kit > baselib > 20819A1 > platforms > wiced_platform.c]
v Local

spar_debug_continue: @ "\@00" o (@ =G5 i < EPaeL eI S5

£
{

inter t ve: @ = . = = e =
nerrupt_save wiced hal_gpio configure pin(*platform gpio[i].gpio, (plaf
i: <optimized out>
> Global
Y > Static
e 3
> WATCH
“ CALL STACK PAUSED ON START o
wiced platform_init@@x@@58lcec

application_start_internal@ox00501486

DEBUG CONSOLE ERM ~ X

“~ BREAKPOINTS se check OUTPUT tab (Adapter Output) for output m C:/Program Files (x8

> CORTEX PERIPHERALS 6) /SEGGER/JLink_V648b/JLinkGDBServerCL

 CORTEX REGISTERS Launching server: "C:/Program Files (x86)/SE fJLink V648b/JLinkGDBServerCL"
"-if" "swd" "-port" "50000" "-swoport" "50001" "-telnetport™ "50002" "-device"
"Cortex-M4"
Launching GDB: "C:\Users\mcha\ModusToolbox\tools_2.1\gcc-7.2.1\bin\arm-none-ea

bi-gdb.exe q" "--interpreter=mi
5 git\btsdk240\BT-SDK\apps\ble\beacon\build\CYW920819EVB

Not implemented stop
@140 D Attach Debug (Link) (beacon) Ln101.Col 1 Spacess4 UTF8 LF € win32 A& 0

Figure 15 VS Code J-Link debug session

User Guide 20 of 26 002-20504 Rev. *L
2022-03-02

o~ _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices |n f| neon
ModusToolbox™
Using the hardware debugger

File Edit Selection View Go Run Terminal Help wiced_platform.c - beacon - Visual Studio Code

RUN B Attach Debug (KitProg3) v & > 7 ¥ T 9D Fcx

v VARIABLES c) b \1 > platforms >
~ Local

ntinue: @ "\0ee" for (1 =-@; 1 < gpio_count; i++)

2 wiced_hal gpio configure pin(*platform_gpio[i].gpio, (pla

i: <optimized out>

> Global
> Static

> WATCH

~ CALL STACK PAUSED ON START o

wiced platform_init@@x@@5@lcec platform...
application_start internal@ex0@581486

““ BREAKPOINTS
> CORTEX PERIPHERALS
“ CORTEX REGISTERS

8 0

§° btsdk240* & ®1A0 D Attach Debug (KitProg3) (beacon) Ln101,Col 1 Spaces:4 UTF-8 LF C Win32 &

Figure 16 VS Code OpenOCD debug session

5.5 Hardware debugging from the command line

The command line interface can also be used to build applications, download them, launch GDB servers, and
run GDB with symbols to perform hardware debugging. Some make targets, make debug,make gdebug,
and make attach, have been provided to assist with command line hardware debugging. These make
targets must be run from the application directory. The following steps assume that a probe has connected the
host computer to the kit, the kit and application have been configured for hardware debugging, and the kit has
been programmed with the application.

1. Launch the GDB Server from the command line.

To launch the OpenOCD GDB Server from the command line, use make debug to perform a rebuild of the
application image if needed, or use make gdebug to launch directly. The Makefile recipe will perform the
command documented in Section 5.1 of this document.

To use the SEGGER GDB Server from the command line, define GDB_ SERVER to be 'jlink':
make debug GDB_ SERVER=jlink
In this case, the Makefile recipe will perform the following command line:

"C:\Program Files (x86)\SEGGER\JLink V632g\JLinkGDBServerCL.exe" -USB -
device Cortex-M4 -endian little -if SWD -speed auto -noir -LocalhostOnly

User Guide 210f26 002-20504 Rev. *L
2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon
ModusToolbox™
Using the hardware debugger

BN Command Prompt - "C:\Program Files (x86)\SEGGER\JLink_V632g\JLinkGDBServerCL.exe" -USB... — O *
SEGGER J-Link GDB Se

JLinkARM.d11 V6 2

WARNING: Unknown comm ine er -USB found.
(ndian little -if SWD -speed auto -noir -Locja

2. Runthe GNU GDB command-line application in a separate console. You can perform this from the
application directory by usingmake attach. The recipe for this Makefile target will launch GDB using a
command line like: <install-dir>/tools_<X.Y>/ gcc-<version>/bin/arm-none-eabi-gdb.exe.

GNU GDB is an interactive command-line application. The following steps are demonstrated in the figure
below.

3. Connect GDB with the proper GDB server port with the command target remote
localhost:<port>.

Replace <port> with 3333 when using OpenOCD defaults, or 2331 for J-Link.

4. Load the symbol file for the application with symbol-file <application *.elf>. Usemonitor halt to haltthe
embedded application and 1 (as in list) to list the source code at that location.

5. Tobreakoutofthe BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED () loop, setthe
variable spar debug continue tonon-zerowith set var spar debug continue=l.

User Guide 22 of 26 002-20504 Rev. *L
2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices | n f| neon
ModusToolbox™
Using the hardware debugger

BEE Command Prompt - tools\gec-7.2.1-1.00bin\arm-none-eabi-gdb.exe - O >

to "wor

Bl EHells

tinue=1

h if ENABLE_JTAG

User Guide 23 of 26 002-20504 Rev. *L
2022-03-02

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

ModusToolbox™
Troubleshooting

6 Troubleshooting
Here are some issues faced during hardware debugging sessions:

e When breakpoints have been set, and you perform a clean/build followed by the Debug launch (program
device and attach hardware debugger), the breakpoints are no longer operative. As a workaround, set
breakpoints after the rebuild, program, and attach sequence.

e The ending of debug sessions, when stopped at a breakpoint using the J-Link and OpenOCD probes show
different behaviors. When using the J-Link probe, execution continues after the session is ended. When
using the OpenOCD probe execution stops at the breakpoint when the session is ended.

e When using the OpenOCD probe and a device such as CYW20819A1 that supports only two hardware
breakpoints, the message "can't add breakpoint: resource not available" is displayed if two hardware
breakpoints are already in use and an attempt is made to single step.

e During a hardware debug session, an attempt to “restart the process” without first terminating and
restarting manually will fail. As explained in Section 4, the CYWxxxxx device reboots to ROM code that
initializes GPIO to a default state, disabling the SWD configuration. Restart cannot be supported.

e When using breakpoints or stepping in XIP (execute in place) code, typical for the CYW20819A1, use
hardware breakpoints. The code resides in flash memory and cannot be directly overwritten with soft
breakpoints. Be aware of the limited number of hardware breakpoints and watchpoints supported by the
devices.

e Immediately after Attach is launched, the debugger may stop at a location that does not show source code
and instead has a message like “Break at address "0x5121d0" with no debug information available, or
outside of program code”. In this case, use the Resume button (or select Run > Resume), and then halt the
execution with the Suspend button (or select Run > Suspend). Source code including the line with the
BUSY WAIT TILL MANUAL CONTINUE IF DEBUG ENABLED () macro should then be displayed.

e When single-stepping through sources, progress is stopped, and a message is displayed like "Break at
address "0x7ecba" with no debug information available, or outside of program code”. This is typical when
stepping into a library or ROM code where no debug symbols are available. The way out is to select the
function further up the call stack and work with a subsequent breakpoint at that source code level.

o Ifthe GDB server fails to launch, look for and close any other instances of the GDB client application that
may have been left running (arm-none-eabi-gdb.exe).

e Remember to “make clean” before rebuilding sources after making any edits to the Makefile.

User Guide 24 of 26 002-20504 Rev. *L
2022-03-02

ModusToolbox™

o _.
Hardware debugging for AIROC™ Bluetooth® System-on-Chip devices ‘ |n f| neon

Revision history

Revision history

Document Date of release Description of changes
version

** 2017-08-23 Initial release.

*A 2018-11-02 Updated for ModusToolbox™.

*B 2019-02-15 Updated title.
Changed ENABLE_JTAG setting to ENABLE_DEBUG.
Added references to Linux and macOS.
Added description for CYW208xx.
Added troubleshooting section.

*C 2019-04-23 Removed Associated Part Family.

*D 2019-06-11 Updates throughout the document.

*E 2019-09-26 Updated for ModusToolbox™ 2.0 and MiniProg4.

*F 2019-10-15 Added troubleshooting note.

*G 2019-11-20 Added additional description for command line debugging and a
troubleshooting note.

*H 2020-04-08 Added support for VS Code.

*| 2020-05-08 Added troubleshooting for Eclipse Debug launch.

*J 2021-11-18 Branding updates, added CYW307xx family.

*K 2022-01-13 Added CYW43012C0 to support list and description of hardware
debugging for kits with KitProg3 bridge.

*L 2022-03-02 Updated hyperlinks across the document.

User Guide 25 0f 26 002-20504 Rev. *L

2022-03-02

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-02
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Go to www.infineon.com/support

Document reference
002-20504 Rev. *L

IMPORTANT NOTICE

The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.infineon.com/support
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 Hardware and software requirements

	2 Debug probe software setup
	2.1 Debug probe
	2.2 KitProg3
	2.3 Infineon MiniProg4
	2.4 SEGGER J-Link

	3 Kit setup
	4 Preparing the embedded application for debug
	5 Using the hardware debugger
	5.1 Validate the hardware setup
	5.2 Using the Eclipse IDE for ModusToolbox™
	5.3 Using the Visual Studio Code IDE
	5.4 Use VS Code for hardware debugging
	5.5 Hardware debugging from the command line

	6 Troubleshooting
	Revision history

