

User Guide Please read the Important Notice and Warnings at the end of this document 002-19289 Rev. *I

www.infineon.com page 1 of 20 2022-03-01

AIROC™ Firmware Upgrade Library

ModusToolbox™

About this document

Scope and purpose

The firmware upgrade feature provided in ModusToolbox® allows an external device to install a newer firmware
version on devices equipped with AIROC™ Bluetooth® chips. This document describes the functionality of the

AIROC™ Firmware Upgrade Library used in various ModusToolbox™ sample applications. The remainder of the

document uses CYW20819 for example, but the feature and library usage are the same for all Infineon
Bluetooth® devices supporting the firmware upgrade feature.

Intended audience

This document is intended for application developers using a ModusToolbox™ Bluetooth® Software
Development Kit (SDK) to create and test designs based on AIROC™ Bluetooth® devices.

Acronyms and abbreviations

In most cases, acronyms and abbreviations are defined on first use.

Note: For a comprehensive list of acronyms and other terms used in the documents, go to the Glossary.

Reference

[1] Bluetooth® Core Specification 5.2

[2] AIROC™ Secure Over-the-Air Firmware Upgrade

[3] MeshClient and ClientControlMesh App user guide

http://www.infineon.com/
https://www.infineon.com/cms/en/about-infineon/investor/reporting/glossary/
https://www.bluetooth.com/specifications/adopted-specifications
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/index.html
https://cypresssemiconductorco.github.io/btsdk-docs/BT-SDK/index.html

User Guide 2 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 3
1.1 IoT resources and technical support .. 3

2 Design and architecture .. 4

2.1 Dual partitions ... 4
2.2 Copy from storage to first partition .. 5
2.3 GATT database .. 7
2.4 OTA firmware upgrade procedure .. 8

2.5 HCI firmware update procedure ... 10

3 Library reference .. 14

3.1 Firmware Upgrade Library initialization .. 14
3.2 Firmware upgrade initialize nonvolatile storage locations ... 15
3.3 Firmware upgrade store data to nonvolatile storage .. 15

3.4 Firmware upgrade retrieve data from nonvolatile storage ... 16
3.5 Firmware upgrade finish ... 16

3.6 OTA firmware upgrade initialization .. 17
3.7 OTA firmware upgrade connection status ... 17
3.8 OTA firmware upgrade read handler .. 18

3.9 OTA firmware upgrade write handler ... 18
3.10 OTA firmware upgrade indication confirmation .. 18

Revision history... 19

User Guide 3 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Introduction

1 Introduction

The AIROC™ Firmware Upgrade Library is split into two parts. The top-level firmware upgrade module of the
library provides a state machine with commands interfaces, status callbacks, and data handling. This module
can be driven by applications that respond to HCI or Bluetooth® physical interfaces. For over-the-air (OTA)

firmware upgrades, the module provides a simple implementation of the GATT procedures to interact with the

device performing the upgrade. The Hardware Abstraction Library (HAL) firmware upgrade module of the
library provides support for storing data in the nonvolatile memory and switching the device to use the new
firmware when the upgrade is completed. Embedded applications may use OTA module functions (which in

turn use HAL module functions), or the application may choose to use HAL module functions directly. It is

assumed that the reader is familiar with the Bluetooth® Core Specification [1].

The library supports secure and non-secure versions of the upgrade. In the non-secure version, a simple CRC32

verification is performed to validate that all bytes that have been sent from the device performing the upgrade
are correctly saved in the serial flash of the device. The secure version of the upgrade validates that the image is
correctly signed and has correct production information in the header. See the AIROC™ Secure Over-the-Air

Firmware Upgrade application note [2] for the details of image generation and verification. In addition, see
MeshClient and ClientControlMesh App user guide [3] for details regarding over-the-air firmware upgrades for
mesh applications.

1.1 IoT resources and technical support

The wealth of data available here will help you to select the right IoT device for your design, and quickly and

effectively integrate the device into your design. You can access a wide range of information, including
technical documentation, schematic diagrams, product bill of materials, PCB layout information, and software

updates. You can acquire technical documentation and software from the Support Community website.

https://www.infineon.com/cms/en/about-infineon/make-iot-work/iot-solutions/
https://community.infineon.com/

User Guide 4 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

2 Design and architecture

2.1 Dual partitions

The dual-partition method is used for devices without execute-in-place (XIP) code sections. To ensure a failsafe
upgrade, the external or on-chip flash (OCF) memory of Infineon AIROC™ chips is organized with two firmware

partitions: DS1 and DS2. During the startup operation, the boot code of the chip checks the first firmware

partition (DS1), and if a valid image is found, assumes that the first partition is active and starts executing the
code in the first partition.

If the first partition does not contain a valid image, the boot code checks the second partition (DS2) and starts
the execution of the code in the second partition if a valid image is found there. If neither partition is valid, the

boot code enters the download mode and waits for the code to be downloaded over HCI UART. Addresses of

the partitions are programmed in a file with a .btp extension located in the platform directory of the SDK. For

example, the .btp file for the CYW20719 device can be found in the ModusToolbox™ IDE under the
mtb-shared\wiced_btsdk project folder in the Project Explorer pane, which is created and used by all AIROC™
applications:

mtb-shared\wiced_btsdk\dev-kit\baselib\20719B2\<version>\platforms\20719_OCF.btp

The firmware upgrade process stores the received data in the inactive partition. When the download procedure

is completed and the received image is verified and activated, the currently active partition is invalidated, and

then the chip is rebooted. After the chip reboots, the previously inactive partition becomes active. If, for some

reason, the download or the verification step is interrupted, the valid partition remains valid and chip is not
rebooted. This guarantees the failsafe procedure.

Table 1 shows the recommended memory section configuration values for an application supporting the

firmware upgrade feature to be executed on a device with an external 4-Mbit serial flash.

Table 1 Recommended memory section offsets and lengths for external flash

Section name Offset Length Description

Static Section (SS) 0x0000 0x2000 Static section used internally by the chip firmware.

Volatile Section

(VS1)
0x2000 0x1000

First volatile section used for the application and the stack to
store data in the external or on-chip flash memory. One serial

flash sector.

Volatile Section

(VS2)
0x3000 0x1000

Used internally by the firmware when VS1 needs to be

defragmented.

Data Section (DS1) 0x4000 0x3E000 First partition.

Data Section (DS2) 0x42000 0x3E000 Second partition.
.

Table 2 shows the recommended layout for on-chip flash. These settings are configured on a per-platform
basis by the *.btp file.

Table 2 Recommended memory section offsets and lengths for on-chip flash

Section name Offset Length Description

Static Section (SS) 0x500000 0x400 Static section used internally by the chip firmware.

Volatile Section

(VS1)
0x500400 0x1000

First volatile section used for the application and the stack to
store data in the external or on-chip flash memory. One serial

flash sector.

User Guide 5 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

Section name Offset Length Description

Volatile Section

(VS2)
N/A N/A

Data Section (DS1) 0x501400 0x1F600 First partition.

Data Section (DS2) 0x520A00 0x1F600 Second partition.

2.2 Copy from storage to first partition

A third upgrade layout option exists that uses an on-chip or external (off-chip) flash memory area to
temporarily store the upgrade image. This option is used for devices with XIP code sections. XIP code is built to

execute from a fixed location within the first flash partition. To upgrade, a new firmware image is downloaded
to the designated storage location. After the download is validated, it is copied over the active partition. This

procedure is performed in a failsafe manner by using a small second flash partition to perform the copy
operation as described below. The flash layout for devices with XIP is shown in Table 3.

Table 3 Example memory section offsets and lengths for on-chip flash with external flash upgrade
storage

Section name Offset Length Description

Static Section (SS) 0x500000 0x400 Static section used internally by the chip firmware.

Volatile Section

(VS1)
0x500400 0x1000

First volatile section used for the application and the stack to

store data in the external or on-chip flash memory. One serial

flash sector.

Volatile Section

(VS2)
N/A N/A

Data Section (DS1) 0x501400 0x3DC00* First partition. *Limited to 0x1EE00 if storage is on-chip

Data Section (DS2) 0x53F000 0x1000
Second partition, app that copies from storage to first

partition.

Storage On-chip or external

During firmware upgrade, the device performing the procedure (Downloader) pushes chunks of the new image

to the device being upgraded. The embedded application receives the image and stores it in the external or on-

chip flash. When all data has been transferred, the Downloader sends a command to verify the image passing a

32-bit CRC checksum. The embedded app reads the image from the flash and verifies the image. For the non-
secure download, the library calculates the checksum and verifies that it matches received CRC. For the secure
download case, the library performs Elliptic Curve Digital Signature Algorithm (ECDSA) verification and verifies

that the Product Information stored in the new image is consistent with the Product Information of the

firmware currently being executed on the device. If verification succeeds, the embedded application

invalidates the active partition and reboots the chip.

When rebooted, the chip will find a valid image in the second partition. This is a small application that performs
the copy of the validated image from the storage location to the active partition. Once the copy is completed,
the active partition is validated and the device is rebooted. After rebooting, the device will use the new

firmware that has been copied to the first partition.

The upgrade image storage location can be designated “on_chip” or “external_sflash” in the kit-specific

makefile found in the kit’s BSP folder. For example, mtb-shared/wiced_btsdk/dev-
kit/bsp/TARGET_<target>/<version>/<target>.mk. The makefile variable is CY_CORE_OTA_FW_UPGRADE_STORE.
If the storage location is “on_chip”, it will reside in the upper half of the DS1 partition. This limits the size of

both the active partition and the storage location to 0x1EE00 (126,464 bytes) for the example layout in Table 3.

User Guide 6 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

If the storage location is designated as “external_sflash”, the full extent of DS1 can be used as the active

partition. Larger firmware images may require external storage for upgrades. By default, when external storage
is selected, the image in the external flash is encrypted. The key for this encryption is regenerated as a random
number during each firmware upgrade and is stored in non-volatile memory in the VS1 partition (shown in
Table 1). VS1 is on-chip, by default. The key is recalled from VS by the small application kept in DS2. This
application will decrypt the image using the key while copying it to the active partition. The optional encryption

is enabled by CY_APP_OTA_DEFINES+=-DOTA_ENCRYPT_SFLASH_DATA in the kit-specific makefile.

Note that this method of upgrade completes all firmware upgrade transactions after the download image is
validated and confirmation is sent to the Downloader. The device is out of communication for several seconds

while rebooting, copying the download image to the active partition, and then rebooting again with the
upgraded firmware.

Figure 1 shows a block diagram of the Firmware Upgrade Library modules.

Figure 1 Firmware upgrade modules

While different upgrade methods (for example, a different OTA procedure, SPI, or UART download) may require
different firmware upgrade module implementations, the HAL firmware upgrade implementation will likely be
the same, and will not require changes to that module of the library. The sample OTA firmware upgrade module

is provided in the mtb-shared\wiced_btsdk project, created and used by applications created in

ModusToolbox™, in the Project Explorer pane under:

mtb-shared\wiced_btsdk\dev-kit\libraries\btsdk-ota\<version>\COMPONENT_fw_upgrade_lib

The implementation of the HAL firmware upgrade module is provided in:

mtb-shared\wiced_btsdk\dev-kit\libraries\btsdk-
ota\<version>\COMPONENT_fw_upgrade_lib\<device>\fw_upgrade.c

The "ota_firmware_upgrade" sample application that exercises the library is available using the “New

Application” wizard in the ModusToolbox™ Quick Panel. Run the wizard, select your board, and under the

"Bluetooth®" category, choose the "Firmware Upgrade via OTA" sample application.

The sample application demonstrates the use of the required OTA_FW_UPGRADE make variable, as well as the
optional secure configuration, and where supported, options to configure the storage location of the update
image (on-chip flash vs. external flash).

Similarly, the “hci_firmware_upgrade” sample application (under the Quick Panel “Manufacturing” category)
demonstrates firmware upgrades via the HCI UART.

User Guide 7 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

2.3 GATT database

The GATT services and characteristics listed below along with the correct UUIDs can be added to an app by

using the Bluetooth® Configurator. Depending on the secure or non-secure method that the application wants
to use, the GATT database of the device capable of receiving an OTA firmware upgrade will contain either an
OTA Secure Upgrade or an OTA Upgrade service declaration using one of the UUIDs listed in Table 4.

Table 4 OTA upgrade service

Service name UUID

OTA Upgrade Service {ae5d1e47-5c13-43a0-8635-82ad38a1381f}

OTA Secure Upgrade Service {C7261110-F425-447A-A1BD-9D7246768BD8}

The service will contain Control Point and Data characteristics. The Control Point characteristic shall also
contain a standard Client Characteristic Configuration descriptor with mandatory properties defined

in Table 5.

Table 5 OTA firmware upgrade service characteristics

Characteristic name UUID Mandatory properties

OTA Upgrade Control

Point

{a3dd50bf-f7a7-4e99-838e-

570a086c661b}
Write, Indicate, Notify

OTA Upgrade Control
Point Client

Characteristic

Configuration Descriptor

0x2902 Read, Write

OTA Upgrade Data
{a2e86c7a-d961-4091-b74f-

2409e72efe26}
Write

If the application requires a secure link between the Downloader and the embedded application, the
Characteristics shall be defined in the GATT database to include LEGATTDB_PERM_AUTH_WRITABLE.

User Guide 8 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

2.4 OTA firmware upgrade procedure

A message sequence chart showing an OTA firmware upgrade procedure is shown in Figure 2.

Figure 2 OTA firmware upgrade message sequence chart

Note: Thin lines in Figure 2 correspond to the messages sent using the Control Point characteristic. Thick
lines indicate messages sent using the Data characteristic.

Before performing the upgrade procedure, the Downloader should enable notifications and indications for the

Control Point characteristic by writing the corresponding value to the Client Characteristic Configuration
descriptor. If the Downloader is using a Bluetooth® stack that does not allow the configuration of simultaneous

notifications and indications, at least one of them must be configured.

All multi-octet values, for example the size of the image and the CRC32, are sent using little-endian format.

To start the upgrade, the Downloader sends the WICED_OTA_UPGRADE_COMMAND_PREPARE_DOWNLOAD

command (see Table 6 and Table 7 for details of the commands and events). This indicates that a new upgrade

User Guide 9 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

process is being started. The data received after that command will be stored from the zero-offset position of

the inactive logical memory partition.

After the Downloader receives the WICED_OTA_UPGRADE_STATUS_OK message, it must send the

WICED_OTA_UPGRADE_COMMAND_DOWNLOAD command, passing four bytes that specify the memory image size

to be downloaded. If WICED_OTA_UPGRADE_STATUS_OK is received in reply, the Downloader starts sending
chunks of data.

When the library receives the WICED_OTA_UPGRADE_COMMAND_DOWNLOAD command from the Downloader, it

verifies the configuration of active and inactive partitions. If the configuration is not valid, the library sends
WICED_OTA_UPGRADE_STATUS_INVALID_IMAGE.

After the final image chunk is sent, the Downloader sends the WICED_OTA_UPGRADE_COMMAND_VERIFY

command that passes the image checksum calculated on the host. The library verifies the stored image and

sends the WICED_OTA_UPGRADE_STATUS_OK or WICED_OTA_UPGRADE_STATUS_VERIFICATION_FAILED

message to the Downloader. If verification was successful, the firmware automatically reboots the chip. If the
verification was not successful, the firmware sends a WICED_OTA_UPGRADE_STATUS_VERIFICATION_FAILED
status to the Downloader. If the download process is interrupted or if the verification fails, the embedded

application continues its execution. To restart the process, the Downloader will need to start from the

beginning by sending WICED_OTA_UPGRADE_COMMAND_PREPARE_DOWNLOAD.

All commands and data packets are sent from the Downloader to the embedded application using the GATT
Write request procedure. All messages to the Downloader except for the final verification

WICED_OTA_UPGRADE_STATUS_OK message are sent using the GATT Notification procedure. The Verification
OK message is sent using the GATT Indication procedure. The library reboots the chip as soon as it receives the

Indication Confirmation from the Downloader. If the Downloader had enabled notifications, and did not allow
indications, the verification WICED_OTA_UPGRADE_STATUS_OK message is sent using the GATT Notify

procedure. In that case, the library waits for one second after sending the notification, marks the newly
updated partition as valid, invalidates the current partition, and then reboots the chip.

The library accepts data chunks of up to 512 octets in length. For better performance, it is recommended that

the Downloader negotiates the largest possible maximum transmission unit (MTU) and sends data chunks of

(MTU minus 3) octets.

Table 6 OTA firmware upgrade commands

Command Name Value Parameters

WICED_OTA_UPGRADE_COMMAND_PREPARE_DOWNLOAD 1

WICED_OTA_UPGRADE_COMMAND_DOWNLOAD 2 4-byte image size

WICED_OTA_UPGRADE_COMMAND_VERIFY 3 4-byte CRC32

WICED_OTA_UPGRADE_COMMAND_ABORT 7

Table 7 OTA firmware upgrade events

Event Name Value Parameters

WICED_OTA_UPGRADE_STATUS_OK 0

WICED_OTA_UPGRADE_STATUS_UNSUPPORTED_COMMAND 1

WICED_OTA_UPGRADE_STATUS_ILLEGAL_STATE 2

WICED_OTA_UPGRADE_STATUS_VERIFICATION_FAILED 3

WICED_OTA_UPGRADE_STATUS_INVALID_IMAGE 4

User Guide 10 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

2.5 HCI firmware update procedure

The firmware can be updated via the HCI interface. This method can be useful when the update is performed by
an MCU directly connected to the HCI UART interface of the Bluetooth® device. In this method, the embedded

application running on the Bluetooth® device can use the firmware update library by responding to HCI

commands with library procedure calls, and responding to library status callbacks with HCI events.

A message sequence chart showing an HCI firmware upgrade procedure is shown in Figure 3. The chart starts

with the wiced_hci_firmware_upgrade_init() call to initialize the library. This is called from the hci
firmware update application initialization. This call provides a status update callback procedure, labeled
status_update in the chart. In the hci_firmware_update code example, this is the
hci_dfu_status_callback()function.

Next, the chart shows HCI commands HCI_CONTROL_MISC_COMMAND_GET_VERSION and

HCI_CONTROL_DFU_COMMAND_READ_CONFIG that are handled by the hci firmware upgrade application
directly. The application responds to these commands with HCI events containing the requested information.
The get_version event includes the BTSDK build version, the Bluetooth® device identification, and the HCI
firmware update application identifier. The config command response event provides the sector size used to

store data to flash. This is also the size expected for all data transfers except the last.

The rest of the chart shows HCI commands that result in library calls to

hci_firmware_upgrade_handle_command() and hci_firmware_upgrade_handle_data(). The HCI

command HCI_CONTROL_DFU_COMMAND_WRITE_COMMAND has a command value in the first byte of the
payload. These commands are shown in the chart as prepare, download, and verify. The responses to these

commands are generated in the status callback handler.

For the command WICED_HCI_UPGRADE_COMMAND_PREPARE_DOWNLOAD, the
HCI_CONTROL_DFU_EVENT_STARTED event is returned. After that the download size is sent using the

command WICED_HCI_UPGRADE_COMMAND_DOWNLOAD. The first four bytes of the command payload should
contain the update image byte count. No response is returned for this command.

The command WICED_HCI_UPGRADE_COMMAND_VERIFY takes time to complete, so two events are provided:
HCI_CONTROL_DFU_EVENT_VERIFICATION when verification starts and

HCI_CONTROL_DFU_EVENT_VERIFIED when verification is successful. If verification fails, the library status
callback passes the status HCI_FW_UPGRADE_STATUS_ABORTED. This is used to generate the HCI event

HCI_CONTROL_DFU_EVENT_ABORTED.

Data is transferred using the HCI command HCI_CONTROL_DFU_COMMAND_WRITE_DATA. This command causes

the application to call the library function hci_firmware_upgrade_handle_data(). If the return value
from this call indicates success, then the HCI event HCI_CONTROL_DFU_EVENT_DATA is sent. If the data

command results in failure, then no HCI event is generated. The HCI host should wait long enough for the
worst-case flash erase, write, and processing time before aborting, if there is not response from the data write

command.

At any point, the firmware upgrade process can be aborted with the HCI command

HCI_CONTROL_DFU_COMMAND_WRITE_COMMAND with parameter WICED_HCI_UPGRADE_COMMAND_ABORT. This
command stops the process and returns the upgrade process to the initial state. Subsequent upgrade activity
should start again from the beginning.

User Guide 11 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

Host Controller DFU App

Command: GET VERSION

Event: VERSION

Command: CONFIG

Event: CONFIG (sector size)

LibraryHCI Library API

Command: PREPARE

Event: STARTED

Command: DOWNLOAD (file size)

Command: DATA

Event: DATA

Command: VERIFY

Event: VERIFICATION

Event: VERIFIED

wiced_hci_fw_upgrade_init, get sector size

hci_fw_upgrade_handle_command: prepare

status_callback: started

hci_fw_upgrade_handle_command: download

hci_fw_upgrade_handle_data

Return: true/false

status_callback: started

status_callback: completed

hci_fw_upgrade_handle_command: verify

Figure 3 HCI firmware upgrade message sequence chart

Another message sequence chart shown in Figure 4 illustrates how procedural failures are handled. The first
scenario occurs during data transfer. If no acknowledgment event is returned within a time out period after the
HCI_CONTROL_DFU_COMMAND_WRITE_DATA HCI command, then the transfer is aborted.

The second scenario is a verification failure. In that case the HCI_CONTROL_DFU_COMMAND_WRITE_COMMAND is

provided with the WICED_HCI_UPGRADE_COMMAND_VERIFY payload. The response event
HCI_CONTROL_DFU_EVENT_VERIFICATION indicates verification is in progress. A subsequent
HCI_FW_UPGRADE_STATUS_ABORTED event signals the failure. Any further attempt to update firmware must
restart from the beginning.

User Guide 12 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

Host Controller DFU App

Command: DATA

 TIMEOUT
Command: ABORT

Event: ABORTED

LibraryHCI Library API

Command: VERIFY

Event: VERIFICATION

Event: ABORTED

hci_fw_upgrade_handle_data

status_callback: started

status_callback: aborted

hci_fw_upgrade_handle_command: verify

No Response

Figure 4 HCI firmware upgrade failures

The list of HCI command and events as described above are listed in Table 8 and Table 9.

Table 8 HCI firmware upgrade commands (wiced_hci_control.h)

Command name Value Command type Value Parameters

HCI_CONTROL_DFU_COMMAND_

READ_CONFIG
0

HCI_CONTROL_DFU_COMMAND_

WRITE_COMMAND
1

WICED_HCI_UPGRADE_COMMAND_

PREPARE_DOWNLOAD
1

WICED_HCI_UPGRADE_COMMAND_

DOWNLOAD
2 File size

WICED_HCI_UPGRADE_COMMAND_

VERIFY
3

4-byte

CRC32

WICED_HCI_UPGRADE_COMMAND_

ABORT
7

HCI_CONTROL_DFU_COMMAND_

WRITE_DATA
2

Table 9 HCI firmware upgrade events (wiced_hci_control.h)

Event name Value Parameters

HCI_CONTROL_DFU_EVENT_CONFIG 1 Sector size

HCI_CONTROL_DFU_EVENT_STARTED 2

User Guide 13 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Design and architecture

Event name Value Parameters

HCI_CONTROL_DFU_EVENT_DATA 3

HCI_CONTROL_DFU_EVENT_VERIFICATION 4

HCI_CONTROL_DFU_EVENT_VERIFIED 5

HCI_CONTROL_DFU_EVENT_ABORTED 6

User Guide 14 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Library reference

3 Library reference

This section describes the functions exposed by the HAL firmware upgrade module followed by the OTA
firmware upgrade module. You can use the OTA or HCI sample protocols described in this document and call

ota_firmware_upgrade_... or hci_firmware_upgrade_... functions. You can also develop a
completely different method to deliver the firmware image to the embedded application and call
wiced_firmware_upgrade_... functions directly.

Table 10 Function call hierarchy for example code

Operation Example application call Library/module internal call Note

Initialization wiced_ota_fw_upgrade_init wiced_firmware_upgrade_init init

 wiced_firmware_upgrade_init_

nv_locations
At start of

update

GATT Connect /

Disconnect

wiced_ota_fw_upgrade_

connection_status_event

 Upon GATT

connect and

disconnect

Read wiced_ota_fw_upgrade_

read_handler

Write wiced_ota_fw_upgrade_

write_handler

wiced_firmware_upgrade_

store_to_nv
When

updating

Indication

Confirmation

wiced_ota_fw_upgrade_

indication_cfm_handler

wiced_firmware_upgrade_

retrieve_from_nv
When

verifying
after

transfer

completed

Completion wiced_firmware_upgrade_

finish
After image

is verified

3.1 Firmware Upgrade Library initialization

This function is typically called by the OTA firmware upgrade module (see OTA firmware upgrade) or the
application during initialization to configure serial flash sections’ locations and lengths. The module will use

flash layout defaults that are defined by the *.btp file and any makefile overrides for defined values such as
SS_LOCATION, VS_LOCATION, VS_LENGTH, and DS_LOCATION. An application can supply the values directly

by calling the initialization function directly.

Prototype

wiced_bool_t wiced_firmware_upgrade_init(wiced_fw_upgrade_nv_loc_len_t

*p_sflash_nv_loc_len, uint32_t sflash_size);

Parameters

• p_sflash_nv_loc_len: Locations and lengths of different sections present in the serial flash. These must
match the values configured in the platform .btp file during the build process. It is not possible to change
these values during the firmware upgrade procedure. The values are passed to the firmware upgrade
module in the wiced_fw_upgrade_nv_loc_len_t structure as follows:

typedef struct

{

 uint32_t ss_loc; // static section location

User Guide 15 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Library reference

 uint32_t ds1_loc; // ds1 location

 uint32_t ds1_len; // ds1 length

 uint32_t ds2_loc; // ds2 location

 uint32_t ds2_len; // ds2 length

 uint32_t vs1_loc; // vendor specific location 1

 uint32_t vs1_len; // vendor specific location 1 length

 uint32_t vs2_loc; // vendor specific location 2

 uint32_t vs2_len; // vendor specific location 2 length

} wiced_fw_upgrade_nv_loc_len_t;

• p_sflash_size: Serial flash size present on the tag board.

Returns

WICED_TRUE if locations and length were validated successfully. If the initialization function returns
WICED_FALSE, future attempts to start another firmware upgrade would fail. In this state, the only way to
program a new version is to program the serial flash directly or over the HCI UART.

3.2 Firmware upgrade initialize nonvolatile storage locations

The OTA firmware upgrade module or the application must call this during the start of the firmware download

process to set up memory locations. If a download was started but not successfully completed, this function
must be called again. The module will call this function when the module’s state changes from “idle” to “ready

for download” based on commands received from the control point. This description is provided for

completeness in case customization of the download process is desired.

Prototype

wiced_bool_t wiced_firmware_upgrade_init_nv_locations(void);

Parameters

None.

Returns

WICED_TRUE if success; WICED_FALSE otherwise.

3.3 Firmware upgrade store data to nonvolatile storage

This function can be called by the OTA firmware upgrade module or by the application to store a chunk of data

to the physical nonvolatile storage medium. The inactive partition will be written to. The application does not

need to know which type of memory is used or which partition is being upgraded. Typically, the OTA procedure
will call this function when it receives the next data packet from the Downloader. This description is provided

for completeness. The example applications provided rely on the upgrade module to call this function as

needed.

Prototype

uint32_t wiced_firmware_upgrade_store_to_nv(uint32_t offset, uint8_t *data, uint32_t

len);

Parameters

• offset: Memory offset where the data will be stored.

• data: Pointer to the chunk of data to be stored.

User Guide 16 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Library reference

• len : Size of the memory chunk to be stored.

Returns

Number of bytes stored to the storage if successful; 0 otherwise.

3.4 Firmware upgrade retrieve data from nonvolatile storage

This function can be called by the OTA firmware upgrade module or by the application to retrieve a chunk of
data from the physical nonvolatile storage medium. The data is read from the inactive DS partition. The
application does not need to know which type of memory is used or which partition is being upgraded.
Typically, the OTA procedure will call this function during the verification to validate that the full and correct

image has been stored. This description is provided for completeness. The example applications provided rely
on the upgrade module to call this function as needed.

Prototype

uint32_t wiced_firmware_upgrade_retrieve_from_nv(uint32_t offset, uint8_t *data,

uint32_t len);

Parameters

• offset: Memory offset from which the data will be retrieved.

• data: Pointer to where the library will deposit the retrieved data.

• len : Size of the memory chunk to be retrieved.

Returns

Number of bytes retrieved from the storage if successful; 0 otherwise.

3.5 Firmware upgrade finish

After the download is completed and verified, this function may be called to switch the active partition with the
one that has been receiving the new image. This function invalidates the previously active partition and

initiates the reboot.

Prototype

void wiced_firmware_upgrade_finish(void);

Parameters

None.

Returns

None.

User Guide 17 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Library reference

3.6 OTA firmware upgrade initialization

The application that wants to utilize the OTA firmware upgrade module functionality must call this function

during startup. It can optionally register a callback to be issued at the end of the upgrade procedure just before
the chip is rebooted. The application that wants to use the ECDSA firmware verification method must pass a
pointer for valid public key. If the application uses simple CRC32 verification, the pointer to the public key must

be set to NULL.

Prototype

wiced_bool_t wiced_ota_fw_upgrade_init(void *p_public_key,

wiced_ota_firmware_upgrade_status_callback_t *p_status_callback,

wiced_ota_firmware_upgrade_send_data_callback_t *p_send_data_callback);

Parameters

• p_public_key: If the application requires ECDSA verification, it must pass the pointer to the public key

stored in the image. Otherwise, the application must pass NULL pointer.

• p_status_callback: Optional callback to be executed when the Firmware Upgrade state changes. NULL if
not used. The callback is defined as:

typedef void (wiced_ota_firmware_event_callback_t)(uint16_t event, void

*p_data);

• p_send_data_callback: Optional callback to be executed to before sending data over the air. NULL if not
used. The callback is defined as:

typedef wiced_bt_gatt_status_t

(wiced_ota_firmware_upgrade_send_data_callback_t) (wiced_bool_t

is_notification, uint16_t conn_id, uint16_t attr_handle, uint16_t val_len,

uint8_t *p_val);

Returns

None.

3.7 OTA firmware upgrade connection status

The application utilizing the OTA firmware upgrade module must call the function when a peer device
establishes a Bluetooth® Low Energy (LE) connection or the connection goes down.

Prototype

void wiced_ota_fw_upgrade_connection_status_event(wiced_bt_gatt_connection_status_t

*p_status);

Parameters

• p_status: Pointer to a GATT Connection Status structure as received by the application from the stack.

Returns

None.

User Guide 18 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Library reference

3.8 OTA firmware upgrade read handler

The application utilizing the OTA firmware upgrade module must call this function to pass GATT Read requests

to the library for the attributes that belong to the OTA Upgrade Service. The function returns the data and the
error code that must be passed back to the stack.

Prototype

wiced_bt_gatt_status_t wiced_ota_fw_upgrade_read_handler(uint16_t conn_id,

wiced_bt_gatt_read_t *p_read_data);

Parameters

• conn_id: GATT connection ID.

• p_read_data: Pointer to the GATT Read structure that the application receives from the stack.

Returns

Status of the GATT read operation.

3.9 OTA firmware upgrade write handler

The application that uses the OTA firmware upgrade module must call this function to pass GATT Write

requests to the library for the attributes that belong to the OTA Upgrade Service. This function must not be
called if the application is using the ECDSA verification method.

Prototype

wiced_bt_gatt_status_t wiced_ota_fw_upgrade_write_handler(uint16_t conn_id,

wiced_bt_gatt_write_t *p_write_data);

Parameters

• conn_id: GATT connection ID.

• p_write_data: Pointer to the GATT Write structure that the application receives from the stack.

Returns

Status of the GATT Write operation.

3.10 OTA firmware upgrade indication confirmation

The application utilizing the OTA firmware upgrade module must call this function to pass GATT Indication
Confirm requests to the library for the attributes that belong to the OTA Upgrade Service.

Prototype

wiced_bt_gatt_status_t wiced_ota_fw_upgrade_indication_cfm_handler(uint16_t conn_id,

uint16_t handle);

Parameters

• conn_id: GATT connection ID.

• handle: Attribute handle for which the indication confirm message has been received.

Returns

Status of the GATT indication confirm operation.

User Guide 19 of 20 002-19289 Rev. *I

 2022-03-01

AIROC™ Firmware Upgrade Library
ModusToolbox™

Revision history

Revision history

Document

version
Date of release Description of changes

** 2017-08-23 Initial release.

*A 2018-10-15 Updated for ModusToolbox.

*B 2019-02-18 Updated for CYW20819.

*C 2019-04-24 Removed Associated Part Family.

Updated for BTSDK release.

*D 2019-10-15 Updated for ModusToolbox 2.0.

Completing Sunset Review.

*E 2020-01-30 Updated for “Copy from Storage to First Partition” method.

*F 2020-11-23 Added HCI firmware.

Updated descriptions.

Migrated to Infineon template.

*G 2021-02-25 Updated Figure 2.

*H 2021-10-28 Updated terminology per Bluetooth® SIG and Marketing.

*I 2022-03-01 Updated hyperlinks across the document.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-01

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.infineon.com/support

Document reference

002-19289 Rev. *I

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.infineon.com/support
https://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	1.1 IoT resources and technical support

	2 Design and architecture
	2.1 Dual partitions
	2.2 Copy from storage to first partition
	2.3 GATT database
	2.4 OTA firmware upgrade procedure
	2.5 HCI firmware update procedure

	3 Library reference
	3.1 Firmware Upgrade Library initialization
	3.2 Firmware upgrade initialize nonvolatile storage locations
	3.3 Firmware upgrade store data to nonvolatile storage
	3.4 Firmware upgrade retrieve data from nonvolatile storage
	3.5 Firmware upgrade finish
	3.6 OTA firmware upgrade initialization
	3.7 OTA firmware upgrade connection status
	3.8 OTA firmware upgrade read handler
	3.9 OTA firmware upgrade write handler
	3.10 OTA firmware upgrade indication confirmation

	Revision history

