

User Guide Please read the Important Notice and Warnings at the end of this document 002-34884 Rev. **

www.infineon.com page 1 of 12 2022-03-02

AIROC™ BTSTACK-v3.x application memory

management

ModusToolbox™

About this document

Intended audience

AIROC™ Bluetooth® SDK (BTSDK) embedded developers using any of the following device families (all use
BTSTACK versions 3.0 or greater):

AIROC™ CYW55572, AIROC™ CYW20829

User Guide 2 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Table of contents

Table of contents

About this document ... 1

Table of contents .. 2

1 Introduction .. 3

2 IoT resources ... 4

3 Memory management ... 5
3.1 Memory ownership .. 5
3.2 Application memory .. 5

4 Creating memory resources .. 8
4.1 General purpose heap allocation ... 8

5 Usage statistics .. 9

Revision history... 11

User Guide 3 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Introduction

1 Introduction

This document describes the heap and buffer memory management used by AIROC™ Bluetooth® SDK (BTSDK)

applications and the upper layer stack of the Infineon AIROC™ Bluetooth® stack (BTSTACK). This applies only to
devices that contain BTSTACK versions 3.0 or later.

In BTSTACK versions earlier than 3.0, buffer management is handled by the application differently; see the
document 002-16403 – AIROC™ Application Buffer Pools.

Currently, only CYW55572 and CYW20829 based devices use BTSTACK versions 3.0 or later.

User Guide 4 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

IoT resources

2 IoT resources

Infineon provides a wealth of data https://www.infineon.com/cms/en/about-infineon/make-iot-work/iot-

solutions/ to help you to select the right IoT device for your design and quickly and effectively integrate the
device into your design. Infineon provides customer access to a wide range of information, including technical

documentation, schematic diagrams, product bill of materials, PCB layout information, and software updates.
Customers can acquire technical documentation and software from the Infineon Support Community website.

https://www.infineon.com/cms/en/about-infineon/make-iot-work/iot-solutions/
https://www.infineon.com/cms/en/about-infineon/make-iot-work/iot-solutions/
https://community.infineon.com/

User Guide 5 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Memory management

3 Memory management

3.1 Memory ownership

A fundamental construct of the AIROC™ BTSTACK architecture is the concept of memory ownership.
Application memory and stack memory are kept separate with clear ownership and handover.

On startup, the stack allocates the memory it needs for internal protocol management. The size of the
allocated memory is based on the configuration provided by the application using the
wiced_bt_stack_init() function.

To transmit data to a peer Bluetooth® device, a pointer to the memory containing that data is passed to the

stack through a variety of BTSDK functions. This memory must not be altered in any way while being processed

by the stack. When the transmission is complete (or fails), the stack calls back to inform the application that the
memory is now free to be reused.

Similarly, when application data is received from a peer device, the stack stores it in one of its own internal
memory buffers and calls up into the application with a pointer to that data. The data is expected to be
processed immediately or copied into application buffers for later processing. The stack assumes it can then
immediately reuse its memory buffer for the next incoming packet.

3.2 Application memory

Applications typically need static RAM or dynamically allocated RAM. Even though applications can use native
OS functions to allocate and free the RAM, to enable portability across multiple operating systems, BTSDK

provides utility functions to create and use memory from stack heaps and buffer pools. Buffer pools may be

thought of as heaps that support a fixed-size allocation. This can be much more efficient for certain types of
applications that transfer fixed-size blocks of data.

Applications are free to create multiple heaps and/or buffer pools. One of the application heaps should be

designated as “default”.

Note: Most AIROC™ libraries require applications to create a default heap.

The following figure illustrates the separation of application and stack memory.

User Guide 6 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Memory management

Figure 1 Memory management using separate heaps

Keep in mind the following memory-related concepts:

1. The stack allocates resources for various items such as control blocks for connections and data receive
buffers (DRBs) for receiving the incoming asynchronous connection-less (ACL) data based on the

configuration provided in the wiced_bt_cfg_settings_t structure that is passed to the stack in the
wiced_bt_stack_init() function at application start.

2. Note the following on the memory for application data transfer:

a) The application allocates the memory.

b) The memory is returned back to the application typically through a transmit-complete callback after
sending the data over the Host Controller Interface (HCI).

c) The application can free and reallocate the data memory buffer returned.

3. The stack creates a 2000-byte data heap for its dynamic memory needs.

4. Stack data heap memory is used for the following:

a) Queueing commands to the controller

b) Data transfer during responses to be sent by the stack

c) For data transfer related bookkeeping

5. Application memory for its data structures as defined by the application design and buffers for data transfer
as defined by the BTStack functions are kept separate from the stack memory area.

User Guide 7 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Memory management

6. Applications are expected to create a default heap of appropriate size, which can be used by the application
code and helper libraries provided as part of BTSDK.

7. Applications can create private heaps/pools for their use.

User Guide 8 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Creating memory resources

4 Creating memory resources

Two types of memory resources can be created and used by applications based on need.

1. wiced_bt_heap_t: Variable sized allocator to obtain heaps. The application can allocate/free variable
lengths of memory from the heap. The stack manages the allocations and frees of the memory to minimize
fragmentation issues.

2. wiced_bt_pool_t: Fixed sized allocator to obtain buffer pools of fixed length chunks of memory. Buffer
pools are more efficient than variable allocation heaps when an application knows it needs a certain

number of buffers of fixed size.

BTSDK also provides utility functions for storing the memory allocated from stack heaps in buffer queues, and

provides debug functions to show the memory usage.

Applications are free to create multiple heaps. Allocations from specific heaps and pools are done using the
wiced_bt_heap_t or wiced_bt_pool_t pointers returned from calls to wiced_bt_create_heap() and

wiced_bt_create_pool() functions respectively. Because allocations from each heap or pool take the
created pointer as an argument, the allocation mechanism allows for easy accounting of the allocated memory.

Requirement Function to call

Allocate memory from a heap wiced_bt_get_buffer_from_heap(wiced_bt_heap_t *,

size)

Allocate memory from a pool wiced_bt_get_buffer_from_pool(wiced_bt_pool_t *)

4.1 General purpose heap allocation

BTSDK provides the wiced_bt_get_buffer() function that allows applications to get memory from the
default heap created with the wiced_bt_create_heap() function. The wiced_bt_get_buffer()

function is typically used like malloc, i.e., for general purpose allocations in an application.

Note: AIROC™ libraries invoke calls to wiced_bt_get_buffer(). Therefore, the application must

create one heap marked as default, even if the application does not require the default heap itself.

User Guide 9 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Usage statistics

5 Usage statistics

AIROC™ middleware libraries use memory from the default heap, typically for data transfer. As a guideline, the

default heap should not be used for long-term memory requirements.

To set appropriate heap size, set the size of the default heap to more than the MTU (Maximum Transmission
Unit) × number of outstanding packets with the stack.

Requirement Function to call

See all heaps in use in the

application

Call the wiced_bt_get_heap_statistics_with_index() function in a loop,

and increment the index parameter for each iteration.

Get specific heap usage

statisticsa

Call the wiced_bt_get_heap_statistics() function with the specific heap

pointer as a parameter.

Get usage statistics of

application pools

Call the wiced_bt_get_pool_statistics() function.

Get an estimate of the size
of the stack required for a

given configuration

Call the wiced_bt_stack_get_dynamic_memory_size_for_config()
function with the wiced_bt_cfg_settings_t structure it intends to use in the

wiced_bt_stack_init() call.

This estimation function can be invoked before or after calling
wiced_bt_stack_init(). The function call is reentrant and returns the

memory required to support the config settings passed to the function. The

current configuration is not altered by a call to this function.

Code Listing 1 Heap usage statistics

wiced_bt_heap_statistics_t stats;

int i = 0;

while (wiced_bt_get_heap_statistics_with_index(i, &stats) == WICED_TRUE)

{

 WICED_BT_TRACE ("%d Heap Stats: size:%d max_single alloc:%d max_used:%d

fail_cnt:%d\n",

 i,

 stats.heap_size,

 stats.max_single_allocation,

 stats.max_heap_size_used);

 WICED_BT_TRACE ("current num_alloc:%d size_alloced:%d",

 stats.current_num_allocations,

 stats.current_size_allocated);

 WICED_BT_TRACE ("largest_free:%d num_free:%d free_size:%d",

 stats.current_largest_free_size,

 stats.current_num_free_fragments,

 stats.current_num_free_fragments);

}

User Guide 10 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Usage statistics

Code Listing 2 Declaration of wiced_bt_stack_get_dynamic_memory_size_for_config()

/**

* Returns the expected dynamic memory size required for the stack based on the

* p_bt_cfg_settings

*

* @param[in] p_bt_cfg_settings : Bluetooth stack configuration

*

* @return dynamic memory size requirements of the stack

*/

int32_t wiced_bt_stack_get_dynamic_memory_size_for_config(const

wiced_bt_cfg_settings_t* p_bt_cfg_settings);

User Guide 11 of 12 002-34884 Rev. **

 2022-03-02

AIROC™ BTSTACK-v3.x application memory management
ModusToolbox™

Revision history

Revision history

Document

version
Date of release Description of changes

** 2022-03-02 Initial release.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-02

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2022 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Go to www.infineon.com/support

Document reference

002-34884 Rev. **

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

http://www.infineon.com/support
http://www.infineon.com/

